Тренировочная работа №1 по МАТЕМАТИКЕ 10 класс

6 февраля 2019 года Вариант МА00310 (профильный уровень)

Выполнена: ФИО	класс
----------------	-------

Инструкция по выполнению работы

На выполнение тренировочной работы по математике даётся 235 минут. Работа включает в себя 19 заданий и состоит из двух частей.

Ответом в заданиях части 1 (1-12) является целое число, или десятичная дробь, или последовательность цифр. Запишите ответ в отведённом для него месте на листе с заданиями.

В заданиях части 2 (13–19) требуется записать полное решение на отдельном чистом листе.

При выполнении работы нельзя пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Выполнять задания можно в любом порядке, главное — правильно решить как можно больше заданий. Советуем Вам для экономии времени пропускать задание, которое не удаётся выполнить сразу, и переходить к следующему. Если после выполнения всей работы у Вас останется время, можно будет вернуться к пропущенным заданиям.

Желаем успеха!

© СтатГрад 2018-2019 уч. г.

Математика. 10 класс. Вариант МА00310

Часть 1

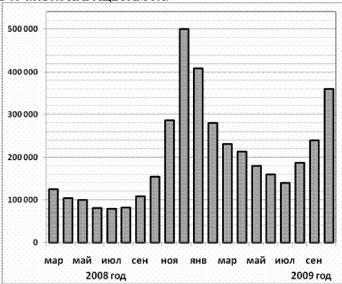
2

В заданиях 1—12 дайте ответ в виде целого числа, или десятичной дроби, или последовательности цифр.

В магазине вся мебель продаётся в разобранном виде. Покупатель может заказать сборку мебели на дому, стоимость которой составляет 10% от стоимости купленной мебели. Шкаф стоит 7800 рублей. Во сколько рублей обойдётся покупка этого шкафа вместе со сборкой?

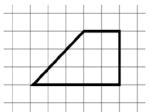
Ответ: ______.

На диаграмме показано количество запросов со словом ПАРАЦЕТАМОЛ, сделанных на поисковом сайте Yandex.ru во все месяцы с марта 2008 года по октябрь 2009 года. По горизонтали указываются месяцы, по вертикали — количество запросов за данный месяц. Определите по диаграмме, сколько было таких месяцев за данный период, когда было сделано более 200 000 запросов со словом ПАРАЦЕТАМОЛ.



Ответ:

3 На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину средней линии этой трапеции.



3

Ответ: ______.

В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,4 независимо от других продавцов. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно.

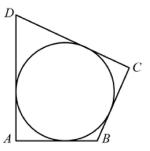
Ответ: ______.

Решите уравнение $\frac{x+5}{7x+11} = \frac{x+5}{6x+1}$. Если уравнение имеет более одного корня, в ответе запишите больший из корней.

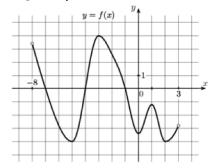
Ответ: ______.

6 В четырёхугольник ABCD, периметр которого D равен 68, вписана окружность, AB = 13. Найдите CD.

Ответ: .



На рисунке изображён график функции y = f(x), определённой на интервале (-8;3). Найдите количество точек, в которых касательная к графику функции y = f(x) параллельна прямой y = 18.



Ответ:

8 В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ ребро AA_1 равно 14, а диагональ BD_1 равна 50. Найдите площадь сечения призмы плоскостью, проходящей через точки A, A_1 и C.

Ответ:

9 Найдите значение выражения $a(25a^2-81)\left(\frac{1}{5a+9}-\frac{1}{5a-9}\right)$ при a=12,6.

Ответ: ______.

5

10 Независимое агентство намерено ввести рейтинг новостных интернетизданий на основе показателей информативности In, оперативности Op, объективности публикаций Tr, а также качества сайта Q. Каждый отдельный показатель — целое число от -2 до 2.

Составители рейтинга считают, что объективность ценится втрое, а информативность публикаций — вчетверо дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид

$$R = \frac{4In + Op + 3Tr + Q}{A}.$$

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило рейтинг 9.

Ответ: ______.

Игорь и Паша могут покрасить забор за 20 часов. Паша и Володя могут покрасить этот же забор за 21 час, а Володя и Игорь — за 28 часов. За сколько часов мальчики покрасят забор, работая втроём?

Ответ: ______.

12 Найдите точку максимума функции $y = \sqrt{-62 - 16x - x^2}$.

Ответ: _____

Часть 2

В заданиях 13–19 запишите полное решение на отдельном чистом листе.

- 13 a) Решите уравнение $2\cos^2\left(\frac{3}{2}\pi + x\right) = \sqrt{3}\sin x$.
 - б) Найдите все его корни, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2} \right]$.
- **14** Дан куб $ABCDA_1B_1C_1D_1$. Точка K середина ребра C_1D_1 .
 - а) Докажите, что расстояние от вершины A_1 до прямой BK равно ребру куба.
 - б) Найдите угол между плоскостями KBA_1 и ADD_1 .
- **15** Решите неравенство $x+3-\frac{16}{x+3} \ge \frac{14-12x-2x^2}{x+1}$.
- **16** Окружность, вписанная в ромб ABCD, касается сторон CD и BC в точках M и O соответственно. Прямые AM и BC пересекаются в точке P.
 - а) Докажите, что $BP \cdot BQ = BC^2$.
 - б) Найдите угол APC, если DM = 4 и MC = 9.
- В июле клиент планирует взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
 - каждый январь долг возрастает на $25\,\%$ по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

На сколько лет планирует клиент взять кредит, если наибольший годовой платёж составит 9 млн рублей?

18

Найдите все значения a, при каждом из которых уравнение

$$(2|x|+x+a)^2 = 8x^2 + 2(x+a)^2$$

имеет единственный корень на интервале (-1;1).

19

Коля играет солдатиками из двух разных наборов. В первом наборе солдатиков меньше, чем во втором, но больше чем 50. А всего солдатиков у Коли меньше 120. Коля знает, что может построить колонну по несколько солдатиков в ряд так, что в каждом ряду будет одинаковое число солдатиков, большее 7, и при этом ни в каком ряду не будет солдатиков из разных наборов.

- а) Сколько солдатиков может быть в первом наборе и сколько во втором? Приведите один пример.
- б) Может ли Коля построить колонну указанным способом по 11 солдатиков в рял?
- в) Сколько всего солдатиков может быть у Коли? Укажите все возможные варианты.

Ответы на тренировочные варианты 00309-00310 (профильный уровень 10 класс) от 06.02.2019

	1	2	3	4	5	6	7	8	9	10	11	12
00309	9240	3	4	0,125	5	16	9	108	- 566,4	5	18	1
00310	8580	8	3,5	0,064	- 5	21	5	672	- 226,8	2	15	- 8

Критерии оценивания заданий с развёрнутым ответом

13

- a) Решите уравнение $2\cos^2\left(\frac{3}{2}\pi + x\right) = \sqrt{3}\sin x$.
- б) Найдите все его корни, принадлежащие отрезку $\left[-3\pi; \, -\frac{3\pi}{2} \right]$.

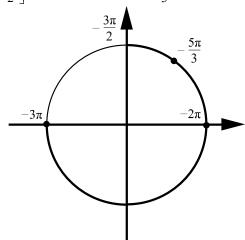
Решение.

а) Используя формулу приведения $\cos\left(\frac{3}{2}\pi + x\right) = \sin x$, уравнение можно записать в виде $2\sin^2 x = \sqrt{3}\sin x$; $\sin x \cdot \left(\sin x - \frac{\sqrt{3}}{2}\right) = 0$.

Следовательно, $\sin x = 0$, откуда $x = \pi k$, $k \in \mathbb{Z}$, или $\sin x = \frac{\sqrt{3}}{2}$, откуда $x = \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$, или $x = \frac{2\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$.

Получим $\pi k; \frac{\pi}{3} + 2\pi n; \frac{2\pi}{3} + 2\pi m, k, n, m \in \mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-3\pi; \, -\frac{3\pi}{2} \right]$. Получим $-3\pi; -2\pi; -\frac{5\pi}{3}$.



Ответ: a) $\pi k; \frac{\pi}{3} + 2\pi n; \frac{2\pi}{3} + 2\pi m, k, n, m \in \mathbb{Z}; 6$) $-3\pi; -2\pi; -\frac{5\pi}{3}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	1
этом имеется верная последовательность всех шагов решения обоих	
пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	0
Максимальный балл	2

- **14** Дан куб $ABCDA_1B_1C_1D_1$. Точка K середина ребра C_1D_1 .
 - а) Докажите, что расстояние от вершины A_1 до прямой BK равно ребру куба.
 - б) Найдите угол между плоскостями KBA_1 и ADD_1 .

Решение.

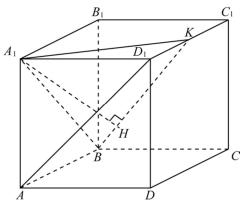
а) Пусть
$$AB=a$$
, тогда $A_1B=a\sqrt{2}$, $A_1K=\sqrt{a^2+\left(\frac{a}{2}\right)^2}=\frac{a\sqrt{5}}{2}$ и $BK=\sqrt{\left(a\sqrt{2}\right)^2+\left(\frac{a}{2}\right)^2}=\frac{3a}{2}$.

В треугольнике A_1BK по теореме косинусов

$$\cos \angle A_1 BK = \frac{A_1 B^2 + BK^2 - A_1 K^2}{2 \cdot A_1 B \cdot BK} = \frac{2a^2 + \frac{9}{4}a^2 - \frac{5}{4}a^2}{2 \cdot \frac{3}{2}a \cdot a\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

Опустим перпендикуляр A_1H из вершины A_1 на прямую BK . Отрезок A_1H — высота треугольника A_1BK . Тогда $A_1H=A_1B\cdot\sin\angle A_1BK=a\sqrt{2}\cdot\frac{1}{\sqrt{2}}=a$. Следовательно, расстояние от вершины A_1 до прямой BK равно ребру куба.

б) Найдём площадь треугольника A_1BK .



$$S_{\Delta A_1 BK} = \frac{1}{2} A_1 H \cdot BK = \frac{1}{2} a \cdot \frac{3}{2} a = \frac{3}{4} a^2.$$

Проекцией этого треугольника на плоскость ADD_1 является треугольник AA_1D_1 . Площадь треугольника AA_1D_1 равна $S_{\Delta AA_1D_1}=\frac{1}{2}a^2$. Отношение площадей этих треугольников является косинусом угла α между плоскостями KBA_1 и ADD_1 . Следовательно, $\cos\alpha=\frac{S_{\Delta AA_1D_1}}{S_{\Delta A_1BK}}=\frac{\frac{1}{2}a^2}{\frac{3}{4}a^2}=\frac{2}{3}$.

Ответ: $\arccos \frac{2}{3}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обоснованно	2
получен верный ответ в пункте δ	۷
Имеется верное доказательство утверждения пункта а.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ , возможно,	1
с использованием утверждения пункта а, при этом пункт а	
не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	2

15 Решите неравенство $x+3-\frac{16}{x+3} \ge \frac{14-12x-2x^2}{x+1}$.

Решение.

3

Запишем исходное неравенство в виде

$$\frac{(x+3)^2 - 16}{x+3} \ge \frac{-2(x-1)(x+7)}{x+1}; \quad \frac{(x-1)(x+7)}{x+3} + \frac{2(x-1)(x+7)}{x+1} \ge 0;$$
$$\frac{(x-1)(x+7)(x+1+2(x+3))}{(x+3)(x+1)} \ge 0; \quad \frac{(x-1)(x+7)(3x+7)}{(x+1)(x+3)} \ge 0.$$

Получаем $-7 \le x < -3$; $-\frac{7}{3} \le x < -1$; $x \ge 1$.

Othet: $[-7;-3); \left[-\frac{7}{3};-1\right); \left[1;+\infty\right).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 6 Окружность, вписанная в ромб ABCD, касается сторон CD и BC в точках M и Q соответственно. Прямые AM и BC пересекаются в точке P.
 - а) Докажите, что $BP \cdot BQ = BC^2$.
 - б) Найдите угол APC, если DM = 4 и MC = 9.

Решение.

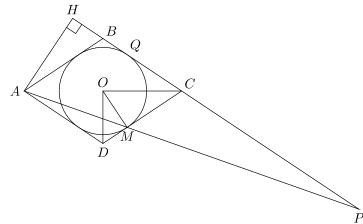
а) Обозначим DM = BQ = x, CM = y. Треугольники CMP и DMA подобны с коэффициентом подобия $\frac{CM}{MD} = \frac{y}{x}$, поэтому

$$CP = \frac{y}{x} \cdot AD = \frac{y(x+y)}{x}.$$

Тогда

$$BP = BC + CP = x + y + \frac{y(x+y)}{x} = (x+y)\left(1 + \frac{y}{x}\right) = \frac{(x+y)^2}{x} = \frac{BC^2}{BQ}.$$

Следовательно, $BP \cdot BQ = BC^2$.



б) Пусть O — центр окружности, радиуса r, вписанной в ромб. Тогда OM — высота прямоугольного треугольника COD, проведённая из вершины прямого угла, поэтому

$$r = OM = \sqrt{DM \cdot MC} = \sqrt{4 \cdot 9} = 6$$
.

Значит, высота ромба равна 2r = 12.

Пусть H — основание перпендикуляра, опущенного из вершины A на прямую BC . Тогда AH — высота ромба, поэтому

$$AH = 2r = 12$$
; $BH = \sqrt{AB^2 - AH^2} = \sqrt{13^2 - 12^2} = 5$.

Из подобия треугольников СМР и DMA находим, что

$$CP = \frac{CM}{MD} \cdot AD = \frac{9}{4} \cdot 13 = \frac{117}{4}.$$

Значит,

$$PH = CP + BC + BH = \frac{117}{4} + 13 + 5 = \frac{189}{4}$$
.

Из прямоугольного треугольника АНР находим, что

$$tg\angle APH = \frac{AH}{PH} = \frac{12 \cdot 4}{189} = \frac{16}{63}$$
.

Следовательно, $\angle APC = \angle APH = \arctan \frac{16}{63}$.

Ответ: $\arctan \frac{16}{63}$.

 Содержание критерия
 Баллы

 Имеется верное доказательство утверждения пункта a, и обоснованно получен верный ответ в пункте δ 3

© СтатГрад 2018-2019 уч. г.

Обоснованно получен верный ответ в пункте δ . ИЛИ Имеется верное доказательство утверждения пункта a и при обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки	2
Имеется верное доказательство утверждения пункта a . ИЛИ При обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки. ИЛИ Обоснованно получен верный ответ в пункте δ с использованием утверждения пункта a , при этом пункт a не выполнен	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	3

- В июле клиент планирует взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
 - каждый январь долг возрастает на 25 % по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

На сколько лет планирует клиент взять кредит, если наибольший годовой платёж составит 9 млн рублей?

Решение.

Пусть кредит планируется взять на n лет. Долг перед банком (в млн рублей) по состоянию на июль должен уменьшаться до нуля равномерно:

$$28, \frac{28(n-1)}{n}, \dots, \frac{28 \cdot 2}{n}, \frac{28}{n}, 0.$$

По условию каждый январь долг возрастает на 25 %, значит, последовательность размеров долга (в млн рублей) в январе такова:

$$35, \frac{35(n-1)}{n}, \dots, \frac{35 \cdot 2}{n}, \frac{35}{n}$$

Следовательно, выплаты (в млн рублей) должны быть следующими:

$$7 + \frac{28}{n}, \frac{7(n-1)+28}{n}, \dots, \frac{7 \cdot 2 + 28}{n}, \frac{7 + 28}{n}$$

Получаем $7 + \frac{28}{n} = 9$, откуда n = 14.

Ответ: 14.

© СтатГрад 2018-2019 уч. г.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	
к исследованию этой модели, и получен результат: — неверный ответ из-за вычислительной ошибки; — верный ответ, но решение недостаточно обосновано	2
Верно построена математическая модель, решение сведено к исследованию этой модели, при этом решение может быть не завершено	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	3

18

Найдите все значения a, при каждом из которых уравнение

$$(2|x|+x+a)^2 = 8x^2 + 2(x+a)^2$$

имеет единственный корень на интервале (-1;1).

Решение.

Перейдём к равносильному уравнению:

$$4x^{2} + 4|x|(x+a) + (x+a)^{2} = 8x^{2} + 2(x+a)^{2};$$

$$(2|x| - x - a)^{2} = 0;$$

$$2|x| - x - a = 0.$$

Рассмотрим функцию f(x) = 2|x| - x - a. Эта функция убывает при $x \le 0$ и возрастает при $x \ge 0$.

Следовательно, уравнение 2|x|-x-a=0 имеет единственный корень на интервале (-1;1) в одном из следующих случаев:

- 1) функция f(x) обращается в ноль в единственной точке, и эта точка принадлежит интервалу (-1;1);
- 2) функция f(x) принимает при x = -1 и x = 1 ненулевые значения разных знаков;
- 3) функция f(x) принимает нулевое значение при x = 1, а при x = -1 положительное;
- 4) функция f(x) принимает нулевое значение при x = -1, а при x = 1 положительное.

Рассмотрим первый случай.

Функция f(x) обращается в ноль в единственной точке тогда и только тогда, когда f(0) = 0, то есть когда a = 0. При этом нулём функции является точка x = 0, которая принадлежит интервалу (-1;1).

Рассмотрим второй случай. Имеем

$$f(-1)f(1)=(3-a)(1-a)<0$$

откуда 1 < a < 3.

наборов.

Рассмотрим третий случай.

Если f(1) = 0, то a = 1; при a = 1 имеем f(-1) = 2 > 0, откуда a = 1.

Рассмотрим четвёртый случай.

Если f(-1) = 0, то a = 3; при a = 3 имеем f(1) = -2 < 0.

Ответ: a = 0; $1 \le a < 3$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , кроме $a=1$	3
С помощью верного рассуждения получены все решения уравнения, в том числе и лишнее $a=3$	2
Задача верно сведена к исследованию возможного значения корней уравнения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

- 19 Коля играет солдатиками из двух разных наборов. В первом наборе солдатиков меньше, чем во втором, но больше чем 50. А всего солдатиков у Коли меньше 120. Коля знает, что может построить колонну по несколько солдатиков в ряд так, что в каждом ряду будет одинаковое число солдатиков, большее 7, и при этом ни в каком ряду не будет солдатиков из разных
 - а) Сколько солдатиков может быть в первом наборе и сколько во втором? Приведите один пример.
 - б) Может ли Коля построить колонну указанным способом по 11 солдатиков в ряд?
 - в) Сколько всего солдатиков может быть у Коли? Укажите все возможные варианты.

Решение.

Пусть в первом наборе k солдатиков, во втором l солдатиков. Тогда числа k и l имеют общий делитель, больший 7, и при этом

$$\begin{cases} 50 < k < l, \\ k + l \le 119. \end{cases}$$

- а) Например, 54 и 63 солдатика. Вместе солдатиков 117, их можно построить в колонну по 9 солдатиков в ряд так, что 6 рядов будет заполнено солдатиками только из первого набора, а 7 рядов только из второго.
- б) Предположим, что общий делитель равен 11. Тогда, учитывая, что 50 < k < 60, получаем, что k = 55. Наименьшее возможное значение l равно 55 + 11 = 66, но вместе получается 121 солдатик, что противоречит условию.
- в) Число l-k больше нуля и делится на общий делитель чисел k и l, поэтому $l-k\geq 8; k-l\leq -8$, что вместе с условием $k+l\leq 119$ приводит к неравенству $2k\leq 111$, то есть $k\leq 55$. При этом

$$k + d \le l \le 119 - k$$
,

где d — наименьший общий делитель, превосходящий 7.

Если k = 51 = 3.17, то d = 17, l = 68, а в наборах всего 119 солдатиков.

Если $k=52=4\cdot 13$, то $65\leq l\leq 67$. Тогда l=65, общий делитель равен 13 и k+l=117.

Если k = 53, то $53 + 53 = 106 \le l \le 66$. Противоречие.

Если $k=54=6\cdot 9$, то $54+9=63\le l\le 65$. Тогда l=63, общий делитель равен 9 и в наборах всего 117 солдатиков.

Если $k = 55 = 5 \cdot 11$, то $66 \le l \le 64$, но числа 64 и 55 взаимно просты. Противоречие.

Ответ: а) Например, 54 и 63; б) нет; в) 117 или 119.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	4
Верно получены три из перечисленных (см. критерий на 1 балл)	2
результатов	3
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	
— обоснованное решение пункта <i>a</i> ;	
— обоснованное решение пункта δ ;	1
— искомая оценка в пункте <i>в</i> ;	
— пример в пункте ϵ , обеспечивающий точность предыдущей оценки	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	4