Тренировочная работа №2 по МАТЕМАТИКЕ 10 – 11 класс

17 мая 2019 года Вариант МА00512 (профильный уровень)

Выполнена: ФИО	класс	

Инструкция по выполнению работы

На выполнение тренировочной работы по математике даётся 235 минут. Работа включает в себя 19 заданий и состоит из двух частей.

Ответом в заданиях части 1 (1-12) является целое число, или десятичная дробь, или последовательность цифр. Запишите ответ в отведённом для него месте на листе с заданиями.

В заданиях части 2 (13-19) требуется записать полное решение на отдельном чистом листе.

При выполнении работы нельзя пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Выполнять задания можно в любом порядке, главное — правильно решить как можно больше заданий. Советуем Вам для экономии времени пропускать задание, которое не удаётся выполнить сразу, и переходить к следующему. Если после выполнения всей работы у Вас останется время, можно будет вернуться к пропущенным заданиям.

Желаем успеха!

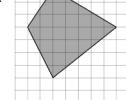
© СтатГрад 2018-2019 уч. г.

Математика. 10 класс. Вариант МА00512

Часть 1

В заданиях 1–12 дайте ответ в виде целого числа, или десятичной дроби, или последовательности цифр.

1	Таксист за месяц проехал 6000 км. Цена бензина — 34 рубля за литр Средний расход бензина на 100 км составляет 8 литров. Сколько рублей
	потратил таксист на бензин за этот месяц?
	Ответ:
2	На рисунке показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали—температура в градусах Цельсия. Определите по рисунку наибольшую температуру воздуха 23 января. Ответ дайте в градусах Цельсия. —8 —10 —12 —14 —16 —18 —20 —22 —24 —00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 12:00 18:00 00:00 22 января —23 января —23 января —24 января
	Ответ:
3	Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки 1×1 (см. рисунок).



2

твет.			

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 6. Результат округлите до сотых.

Ответ: .

5 Найдите корень уравнения $x = \frac{9x - 20}{x + 18}$.

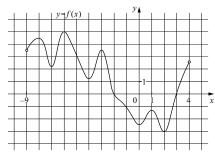
Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Ответ: .

 $oldsymbol{6}$ В треугольнике ABC стороны AC и BC равны, AB=18, $\sin A=0,8$. Найдите AC.

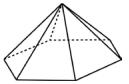
Ответ:

На рисунке изображён график функции y = f(x), определённой на интервале (-9;4). Найдите наибольший корень уравнения f'(x) = 0.



Ответ: ______.

8 Стороны основания правильной шестиугольной пирамиды равны 16, боковые рёбра равны 17. Найдите площадь боковой поверхности этой пирамиды.



3

Ответ:	

© СтатГрад 2018–2019 уч. г.

9 Найдите значение выражения $4^{\frac{1}{6}} \cdot 16^{\frac{5}{12}}$.

Если достаточно быстро вращать ведёрко с водой на верёвке в вертикальной плоскости, то вода не будет выливаться. При вращении ведёрка сила давления воды на дно максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила её давления на дно будет неотрицательной. В верхней точке сила давления, выраженная в ньютонах, равна $P = m \left(\frac{v^2}{L} - g \right)$, где m — масса воды в килограммах, v — скорость движения ведёрка в м/с, L — длина верёвки в метрах, g — ускорение свободного падения (считайте, что g = 10 м/с²). С какой наименьшей скоростью надо вращать ведёрко, чтобы вода не выливалась, если длина верёвки равна 202,5 см? Ответ выразите в м/с.

Ответ: .

11 Два принтера печатают одинаковый текст. Первый принтер печатает в минуту 12 страниц текста, а второй — 21 страницу. Они одновременно начали, но первый принтер закончил печать на 1 минуту 45 секунд позже, чем второй. Сколько страниц в тексте?

Ответ: .

12 Найдите точку минимума функции $y = \sqrt{x^2 + 8x + 27}$.

Ответ: .

Часть 2

5

В заданиях 13-19 запишите полное решение на отдельном чистом листе.

- [13] а) Решите уравнение $(3x^2 19x + 20)(2\cos x + \sqrt{3}) = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left\lceil \frac{3\pi}{2}; 3\pi \right\rceil$.
- **14** Плоскость α проходит через середину ребра AD прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ перпендикулярно прямой BD_1 .
 - а) Докажите, что угол между плоскостью α и плоскостью ABC равен углу между прямыми BB_1 и B_1D .
 - б) Найдите угол между плоскостью α и плоскостью ABC, если объём параллелепипеда $ABCDA_1B_1C_1D_1$ равен $10\sqrt{33}$, $AB=\sqrt{11}$ и AD=5.
- Решите неравенство $\frac{20+x-x^2}{x^2-5x} \le 1-\frac{2}{x-1}$.
- На продолжении стороны AC за вершину A треугольника ABC отложен отрезок AD, равный стороне AB. Прямая, проходящая через точку A параллельно BD, пересекает сторону BC в точке M.
 - а) Докажите, что AM биссектриса угла BAC.
 - б) Найдите площадь трапеции AMBD, если площадь треугольника ABC равна 216 и известно отношение AC:AB=5:4.
- 15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
 - 1-го числа каждого месяца долг возрастает на 4 % по сравнению с концом предыдущего месяца;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что в восьмой месяц кредитования нужно выплатить 29 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования? **18** Найдите все значения *а*, при каждом из которых система

$$\begin{cases} 3|x - 2a| + 2|y - a| = 6, \\ xy - x - 2y + 2 = 0 \end{cases}$$

имеет ровно три различных решения.

- а) Найдите хотя бы одно такое натуральное число n, что десятичная запись числа $n^2 + 2n$ оканчивается всеми цифрами числа n, записанными в том же порядке.
 - б) Может ли такое число оканчиваться цифрой 3?
 - в) Найдите все такие четырёхзначные числа.

Ответы на тренировочные варианты 00509-00512 (профильный уровень) от 17.05.2019

	1	2	3	4	5	6	7	8	9	10	11	12
00509	98	7	10,5	0,007	8	1	1	18	6	24	3	- 3
00510	156	4	17	0,008	3	0,75	- 6	6	2	10	1	- 5
00511	14625	- 12	27	0,12	- 9	25	6	9000	5	5	74	- 3
00512	16320	- 15	24,5	0,14	- 5	15	2	720	4	4,5	49	- 4

Критерии оценивания заданий с развёрнутым ответом

13

- а) Решите уравнение $(3x^2 19x + 20)(2\cos x + \sqrt{3}) = 0$.
- б) Найдите все корни этого уравнения, принадлежащие промежутку $\left\lceil \frac{3\pi}{2}; 3\pi \right\rceil$.

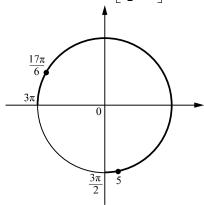
Решение.

а) Запишем уравнение в виде

$$(x-5)(3x-4)(2\cos x + \sqrt{3}) = 0.$$

Значит, x=5, $x=\frac{4}{3}$ или $\cos x=-\frac{\sqrt{3}}{2}$, откуда $x=\pm\frac{5\pi}{6}+2\pi n,\ n\in\mathbb{Z}$.

б) Заметим, что $\frac{4}{3} < 2 < \frac{3\pi}{2} < 5 < 3\pi$. С помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil \frac{3\pi}{2}; 3\pi \right\rceil$.



Получим 5; $\frac{17\pi}{6}$.

Other: a) 5; $\frac{4}{3}$; $\pm \frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) 5; $\frac{17\pi}{6}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте <i>а</i> . ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих пунктов: пункта a и пункта δ	

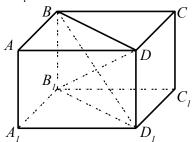
© СтатГрад 2018-2019 уч. г.

Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 14 Плоскость α проходит через середину ребра AD прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ перпендикулярно прямой BD_1 .
 - а) Докажите, что угол между плоскостью α и плоскостью ABC равен углу между прямыми BB_1 и B_1D .
 - б) Найдите угол между плоскостью α и плоскостью ABC, если объём параллелепипеда $ABCDA_1B_1C_1D_1$ равен $10\sqrt{33}$, $AB=\sqrt{11}$ и AD=5.

Решение.

а) В прямоугольнике BB_1D_1D угол BB_1D равен углу BD_1D . Прямая D_1D перпендикулярна плоскости ABC. Прямая BD_1 перпендикулярна плоскости α . Угол между плоскостями равен углу между прямыми, перпендикулярными этим плоскостям. Поэтому искомый угол равен углу между прямыми BB_1 и B_1D .



б) Объём параллелепипеда $ABCDA_{l}B_{l}C_{l}D_{l}$ равен $AB\cdot AD\cdot AA_{l}=10\sqrt{33}$. Следовательно, $DD_{l}=AA_{l}=\frac{10\sqrt{33}}{\sqrt{11}}=2\sqrt{3}$.

Рассмотрим прямоугольный треугольник BD_1D . Его катеты равны $DD_1=2\sqrt{3}$, $BD=\sqrt{AB^2+AD^2}=\sqrt{\left(\sqrt{11}\right)^2+5^2}=6$.

Значит, $\angle BD_1D = \operatorname{arctg} \frac{BD}{DD_1} = \operatorname{arctg} \frac{6}{2\sqrt{3}} = \operatorname{arctg} \sqrt{3}$.

Следовательно, $\angle BD_1D = 60^{\circ}$.

Ответ: б) 60°.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обоснованно	2
получен верный ответ в пункте δ	
Имеется верное доказательство утверждения пункта а.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ , возможно,	1
с использованием утверждения пункта а, при этом пункт а	
не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	2

15

Решите неравенство $\frac{20+x-x^2}{x^2-5x} \le 1-\frac{2}{x-1}$.

Решение.

Преобразуем неравенство:

$$\frac{x-3}{x-1} + \frac{x^2 - x - 20}{x^2 - 5x} \ge 0; \qquad \frac{x-3}{x-1} + \frac{\left(x+4\right)\left(x-5\right)}{x\left(x-5\right)} \ge 0.$$
 Тогда
$$\begin{cases} \frac{x-3}{x-1} + \frac{x+4}{x} \ge 0, & \text{откуда} \\ x \ne 5, \end{cases} \begin{cases} \frac{\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)}{x\left(x-1\right)} \ge 0, \\ x \ne 5. \end{cases}$$

Решая неравенство, получаем $x \in (-\infty; -\sqrt{2}]; (0;1); [\sqrt{2};5); (5;+\infty).$

Othet: $\left(-\infty; -\sqrt{2}\right]; (0;1); \left[\sqrt{2}; 5\right); (5; +\infty).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

На продолжении стороны AC за вершину A треугольника ABC отложен отрезок AD, равный стороне AB. Прямая, проходящая через точку A параллельно BD, пересекает сторону BC в точке M.

а) Докажите, что AM — биссектриса угла BAC.

б) Найдите площадь трапеции AMBD, если площадь треугольника ABC равна 216 и известно отношение AC:AB=5:4.

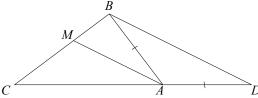
Решение.

3

а) Обозначим $\angle BAC = \alpha$. По теореме о внешнем угле треугольника $\angle ABD + \angle ADB = \alpha$. Треугольник ABD равнобедренный, поэтому $\angle ADB = \angle ABD = \frac{\alpha}{2}$, а так как AM параллельна BD,

$$\angle MAC = \angle BDC = \frac{\alpha}{2} = \frac{1}{2} \angle BAC$$
.

Следовательно, AM — биссектриса угла BAC.



б) По свойству биссектрисы треугольника

$$\frac{CM}{MB} = \frac{AC}{AB} = \frac{5}{4},$$

значит,

$$\frac{S_{ACM}}{S_{ABC}} = \frac{CM}{CB} = \frac{5}{9}, \quad S_{ACM} = \frac{5}{9}S_{ABC} = \frac{5}{9} \cdot 216 = 120.$$

Треугольник DCB подобен треугольнику ACM с коэффициентом $\frac{9}{5}$, поэтому

$$S_{DCB} = \left(\frac{9}{5}\right)^2 S_{ACM} = \frac{81}{25} \cdot 120 = 388,8.$$

Следовательно,

$$S_{AMBD} = S_{DCB} - S_{ACM} = 388,8 - 120 = 268,8$$
.

Ответ: б) 268,8.

5

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и	3
обоснованно получен верный ответ в пункте δ	3
Обоснованно получен верный ответ в пункте δ .	
ИЛИ	
Имеется верное доказательство утверждения пункта а и при	2
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	
ИЛИ	
Привет, обоснованном решении пункта δ получен неверный ответ	
из-за арифметической ошибки.	1
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	3

15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 4 % по сравнению с концом предыдущего месяца;

- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что в восьмой месяц кредитования нужно выплатить 29 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?

Пусть сумма кредита равна S. По условию долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

$$S; \frac{14S}{15}; ...; \frac{2S}{15}; \frac{S}{15}; 0.$$

Первого числа каждого месяца долг возрастает на 4 %, значит, последовательность размеров долга по состоянию на 1-е число такова:

$$1,04S; 1,04 \cdot \frac{14S}{15}; ...; 1,04 \cdot \frac{2S}{15}; 1,04 \cdot \frac{S}{15}.$$

Следовательно, выплаты должны быть следующими:

$$\frac{15 \cdot 0,04S + S}{15}; \frac{14 \cdot 0,04S + S}{15}; \dots; \frac{2 \cdot 0,04S + S}{15}; \frac{0,04S + S}{15}.$$

© СтатГрад 2018-2019 уч. г.

В восьмой месяц выплата составит $\frac{8 \cdot 0,04 \cdot S + S}{15} = \frac{1,32S}{15}$. А всего следует выплатить

$$S + S \cdot 0.04 \left(1 + \frac{14}{15} + \dots + \frac{2}{15} + \frac{1}{15} \right) = S \left(1 + \frac{16 \cdot 0.04}{2} \right) = 1.32 S.$$

Значит, банку нужно вернуть $29\,000 \cdot 15 = 435\,000$ рублей.

Ответ: 435 000 рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	
к исследованию этой модели, и получен результат:	2
— неверный ответ из-за вычислительной ошибки;	
— верный ответ, но решение недостаточно обосновано	
Верно построена математическая модель, решение сведено	
к исследованию этой модели, при этом решение может быть	1
не завершено	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	3

Найдите все значения а, при каждом из которых система

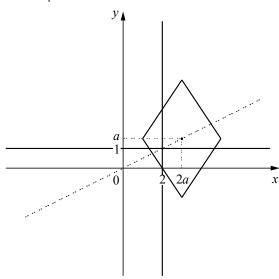
$$\begin{cases} 3|x - 2a| + 2|y - a| = 6, \\ xy - x - 2y + 2 = 0 \end{cases}$$

имеет ровно три различных решения.

Решение.

18

Первое уравнение задаёт на координатной плоскости ромб с диагоналями 4 и 6, параллельными осям Ox и Oy соответственно, и с центром в точке (2a;a). Второе уравнение задаёт две прямые x = 2 и y = 1.



Система имеет ровно три решения в одном из двух случаев: либо одна из прямых пересекает ромб в двух точках, а вторая проходит через только одну из его вершин, либо точка пересечения прямых лежит на стороне ромба, но не в его вершине. Рассмотрим эти случаи по отдельности.

1. Если нижняя или верхняя вершина лежит на прямой y=1, то a=1+3=4 или a=1-3=-2. Центр ромба удалён от прямой x=2 на 6, поэтому прямая x=2 не пересекает ромб.

Если левая или правая вершина лежит на прямой x=2, то $a=\frac{2+2}{2}=2$ или

 $a = \frac{2-2}{2} = 0$, а центр ромба удалён от прямой y = 1 на 1, поэтому прямая y = 1 пересекает ромб в двух точках.

2. Точка пересечения прямых не должна совпасть с вершиной ромба, то есть $a \ne 1$. Подставим x = 2, y = 1 в уравнение:

$$8|a-1|=6$$
, откуда $a=\frac{1}{4}$ или $a=\frac{7}{4}$.

Оба значения удовлетворяют условию $a \neq 1$, а потому при каждом из этих значений a система имеет ровно три решения.

Ответ:
$$0; \frac{1}{4}; \frac{7}{4}; 2.$$

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но из-за	3
арифметической ошибки одно из них неверно	
Рассмотрен только один из двух возможных случаев взаимного	2
расположения двух прямых и ромба: когда точка пересечения	
прямых лежит на стороне ромба или когда одна прямая проходит	
через вершину ромба, а вторая пересекает ромб в двух точках.	
ИЛИ	
Не исключен случай, когда точка пересечения прямых лежит	
в вершине ромба	
Задача верно сведена к исследованию взаимного расположения двух	1
прямых и ромба	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

- a) Найдите хотя бы одно такое натуральное число n, что десятичная запись числа $n^2 + 2n$ оканчивается всеми цифрами числа n, записанными в том же порядке.
 - б) Может ли такое число оканчиваться цифрой 3?
 - в) Найдите все такие четырёхзначные числа.

Решение.

- а) Например, число 9.
- б) Предположим, что n = 10k + 3. Тогда

$$n^2 + 2n = 100k^2 + 60k + 9 + 20k + 6 = 10l + 15$$
,

то есть десятичная запись числа $n^2 + 2n$ оканчивается цифрой 5. Значит, такое невозможно.

в) Запишем условие задачи в таком виде: $n^2 + 2n = n + N \cdot 10000$, преобразуем:

$$n^2 + n = N \cdot 10000$$
, T. e. $n \cdot (n+1) = 2^4 \cdot 5^4 \cdot N$.

Заметим, что n и n+1 не могут одновременно делиться на 2 и не могут одновременно делиться на 5^4 и один из множителей делится на 5^4 и один из множителей делится на 2^4 . Эти два множителя могут совпадать только в том случае, если число n+1 делится на 10000, а число n четырёхзначное, то есть n=9999.

Если $n \neq 9999$, мы должны подобрать два числа, одно из которых делится на 16, а другое на 625 и одно из которых больше другого на 1.

[©] СтатГрад 2018-2019 уч. г.

Математика. 10 класс. Вариант МА00512

9

Переберём нечётные четырёхзначные числа, кратные числу 625: 1875, 3125, 4375, 5625, 6875, 8125, 9375. Из них только число 9375 имеет вид 16k-1, а чисел вида 16k+1 среди них нет.

Значит, искомое число может равняться 9375 или 9999.

Ответ: а) 9; б) нет; в) 9375; 9999.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах a и δ , либо	3
получены верные обоснованные ответы в пунктах a и b	
Получен верный обоснованный ответ в пункте δ , пункты a и b не	
решены, либо получен верный обоснованный ответ в пункте ϵ ,	2
пункты a и δ не решены	
Приведён пример в пункте a , пункты δ и ϵ не решены	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	U
Максимальный балл	4