Тренировочная работа №1 по МАТЕМАТИКЕ 11 класс

25 сентября 2019 года Вариант МА1910112 (профильный уровень)

Выполнена: ФИО	класс

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

$$\begin{aligned} \sin^2\alpha + \cos^2\alpha &= 1\\ \sin 2\alpha &= 2\sin\alpha \cdot \cos\alpha\\ \cos 2\alpha &= \cos^2\alpha - \sin^2\alpha\\ \sin(\alpha + \beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta\\ \cos(\alpha + \beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \end{aligned}$$

Математика. 11 класс. Вариант МА1910112

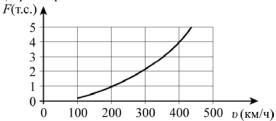
Часть 1

Ответом к каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

1	В доме, в котором живёт Ася, 9 этажей и несколько подъездов. На каждом
	этаже находится по 3 квартиры. Ася живёт в квартире № 38. В каком
	подъезде живёт Ася?

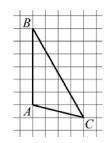
Ответ: ______.

2 Когда самолёт находится в горизонтальном полёте, подъёмная сила, действующая на крылья, зависит от скорости движения. На рисунке изображена эта зависимость для некоторого самолёта. На оси абсцисс откладывается скорость (в километрах в час), на оси ординат — сила (в тоннах силы). Определите по рисунку, чему равна подъёмная сила (в тоннах силы) при скорости 400 км/ч.



Ответ:

На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AB.



2

Ответ: .

В классе 9 учащихся, среди них два друга — Михаил и Андрей. Учащихся случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Михаил и Андрей окажутся в одной группе.

Ответ:

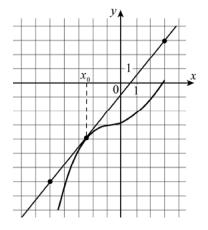
5 Найдите корень уравнения $\frac{1}{9x+5} = \frac{1}{4x+6}$.

Ответ: ______.

6 Площадь параллелограмма ABCD равна 36. Точка E — середина стороны CD. Найдите площадь трапеции ABED.

Ответ: .

7 На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .



3

Ответ:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ известно, что $DB_1=2C_1D_1$. Найдите угол между диагоналями BD_1 и AC_1 . Ответ дайте в градусах.

Ответ: ______.

ч	a	C	ГI)

Найдите значение выражения $36\sqrt{3}$ tg $\frac{\pi}{3}\sin\frac{\pi}{6}$.

Ответ: ______.

Для определения эффективной температуры звёзд используют закон Стефана—Больцмана, согласно которому $P = \sigma ST^4$, где P — мощность излучения звезды (в ваттах), $\sigma = 5,7\cdot 10^{-8}\,\frac{\mathrm{BT}}{\mathrm{M}^2\cdot\mathrm{K}^4}$ — постоянная, S — площадь поверхности звезды (в квадратных метрах), а T — температура (в кельвинах). Известно, что площадь поверхности некоторой звезды равна $\frac{1}{64}\cdot 10^{20}\,\mathrm{m}^2$, а мощность её излучения равна $2,28\cdot 10^{25}\,\mathrm{Bt}$. Найдите температуру этой звезды в кельвинах.

Ответ: ______.

11 Автомобиль выехал с постоянной скоростью 72 км/ч из города А в город В, расстояние между которыми равно 360 км. Одновременно с ним из города С в город В, расстояние между которыми равно 270 км, с постоянной скоростью выехал мотоциклист. По дороге он сделал остановку на 30 минут. В результате автомобиль и мотоцикл прибыли в город В одновременно. Найдите скорость мотоциклиста. Ответ дайте в км/ч.

Ответ: _____

Найдите наибольшее значение функции $y = -\frac{5x^2 + 12x}{x}$ на отрезке [-10;-1].

Ответ: ______.

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

5

- 13 a) Решите уравнение $\sqrt{3} \operatorname{tg}(5\pi + 2x) = 3$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\pi; \frac{5\pi}{2}\right]$
- Точки P и Q середины рёбер AD и CC_1 куба $ABCDA_1B_1C_1D_1$ соответственно.
 - а) Докажите, что прямая BQ перпендикулярна прямой B_1P .
 - б) Пусть H проекция точки Q на прямую B_1P . Найдите B_1H , если AB=24.
- Решите неравенство $\frac{4x^4 4x^3 + x^2}{-2x^2 + 5x 2} + \frac{2x^3 7x^2 + 5x + 1}{x 2} \le 0.$
- **16** Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.
 - а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .
 - б) Найдите радиус данной окружности, если $\angle A$ =135°, B_1C_1 =10 и площадь треугольника AB_1C_1 в семь раз меньше площади четырёхугольника BCB_1C_1 .
- 15 сентября планируется взять кредит в банке на 12 месяцев. Условия его возврата таковы:
 - 1-го числа каждого месяца долг возрастает на 5 % по сравнению с концом предыдущего месяца;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,59 млн рублей?

- | Найдите все значения параметра a, при каждом из которых множество значений функции $y = \frac{5a 15x + ax}{x^2 2ax + a^2 + 25}$ содержит отрезок [0;1].
- Ha доске написаны все пятизначные числа, в десятичной записи которых по одному разу встречаются цифры 4, 5, 6, 7 и 8 (45678, 45687 и т. д.).
 - а) Есть ли среди них число, которое делится на 55?
 - б) Есть ли среди них число, которое делится на 505?
 - в) Найдите наибольшее из этих чисел, делящееся на 11.

math100.ru
Ответы на тренировочные варианты 1910109-1910112 (профильный уровень) от 25.09.2019

	1	2	3	4	5	6	7	8	9	10	11	12
1910109	475	8	0,6	0,25	- 5	5	7	300	27	1	8	- 17
1910110	570	2	0,75	0,2	- 12	7,5	7	108	8	2,2	6	- 23
1910111	4	1	2,5	0,3	5	15	1,5	60	24	10000	72	30
1910112	2	4	3	0,25	0,2	27	1,25	60	54	4000	60	38

Критерии оценивания заданий с развёрнутым ответом

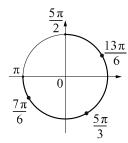
13

- а) Решите уравнение $\sqrt{3} \, \text{tg} (5\pi + 2x) = 3$.
- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\pi; \frac{5\pi}{2}\right]$.

Решение.

Запишем исходное уравнение в виде $\operatorname{tg}(5\pi+2x)=\sqrt{3}$; $\operatorname{tg}2x=\sqrt{3}$, откуда $2x=\frac{\pi}{3}+\pi n$, $n\in\mathbb{Z}$, то есть $x=\frac{\pi}{6}+\frac{\pi}{2}n$, $n\in\mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[\pi; \frac{5\pi}{2}\right]$.



Получим числа: $\frac{7\pi}{6}$, $\frac{5\pi}{3}$, $\frac{13\pi}{6}$.

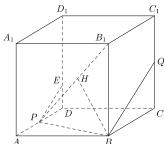
Ответ: a) $\frac{\pi}{6} + \frac{\pi}{2}n$, $n \in \mathbb{Z}$; 6) $\frac{7\pi}{6}$, $\frac{5\pi}{3}$, $\frac{13\pi}{6}$.

v -	
Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- **14** Точки P и Q середины рёбер AD и CC_1 куба $ABCDA_1B_1C_1D_1$ соответственно.
 - а) Докажите, что прямая BQ перпендикулярна прямой B_1P .
 - б) Пусть H проекция точки Q на прямую B_1P . Найдите B_1H , если AB=24 .

Решение.

а) Пусть ребро куба равно 4a. Отметим на ребре DD_1 такую точку E, что DE=a. Прямая PE параллельна прямой BQ, следовательно необходимо проверить, что $\angle EPB_1 = 90^\circ$.



По теореме Пифагора вычислим длины сторон треугольника EPB_1 :

$$PE^2 = PD^2 + DE^2 = 5a^2$$
,

$$B_1E^2 = B_1D_1^2 + D_1E^2 = 32a^2 + 9a^2 = 41a^2$$

$$B_1P^2 = B_1B^2 + BA^2 + AP^2 = 16a^2 + 16a^2 + 4a^2 = 36a^2$$
, $B_1P = 6a$.

Поскольку $5a^2 + 36a^2 = 41a^2 = B_1E^2 = PE^2 + B_1P^2$, по теореме, обратной теореме Пифагора, получаем, что $\angle EPB_1 = 90^\circ$, т. е. прямая BQ перпендикулярна прямой B_1P .

б) Поскольку прямая BQ перпендикулярна прямой B_1P , проекции точек B и Q на прямую B_1P совпадают. В прямоугольном треугольнике BB_1P имеем

$$\cos \angle HB_1B = \frac{HB_1}{B_1B} = \frac{B_1B}{PB_1}$$
, откуда $HB_1 = \frac{B_1B^2}{PB_1} = \frac{576}{36} = 16$.

Ответ: б) 16.

Содержание критерия			
Имеется верное доказательство утверждения пункта а, и	2		
обоснованно получен верный ответ в пункте δ			
Верно доказан пункт а.	1		
ИЛИ			
Верно решён пункт δ при отсутствии обоснований в пункте a			

Решение не соответствует ни одному из критериев, перечис-	0
ленных выше	
Максимальный балл	2

15

Решите неравенство
$$\frac{4x^4 - 4x^3 + x^2}{-2x^2 + 5x - 2} + \frac{2x^3 - 7x^2 + 5x + 1}{x - 2} \le 0.$$

Решение.

Запишем исходное неравенство в виде

$$\frac{4x^4 - 4x^3 + x^2}{-2x^2 + 5x - 2} + \frac{2x^3 - 7x^2 + 5x + 1}{x - 2} \le 0;$$

$$\frac{x^2(2x - 1)^2}{(2x - 1)(2 - x)} + \frac{2x^3 - 7x^2 + 5x + 1}{x - 2} \le 0;$$

$$\begin{cases} -6x^2 + 5x + 1 \\ x - 2 \end{cases} \le 0,$$

$$\begin{cases} x \ne \frac{1}{2};$$

$$\begin{cases} \frac{(6x + 1)(x - 1)}{x - 2} \ge 0, \\ x \ne \frac{1}{2}; \end{cases}$$

$$\begin{cases} -\frac{1}{6}; \frac{1}{2}; \\ (\frac{1}{2}; 1], (2; +\infty). \end{cases}$$

Ответ: $\left[-\frac{1}{6}; \frac{1}{2} \right], \left(\frac{1}{2}; 1 \right], (2; +\infty).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 16 Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C_1 и B_1 соответственно.
 - а) Докажите, что треугольник ABC подобен треугольнику AB_1C_1 .
 - б) Найдите радиус данной окружности, если $\angle A=135^{\circ}$, $B_1C_1=10$ и площадь треугольника AB_1C_1 в семь раз меньше площади четырёхугольника BCB_1C_1 .

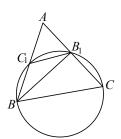
Решение.

3

а) Заметим, что $\angle AB_1C_1 + \angle C_1B_1C = 180^\circ$. Четырёхугольник BCB_1C_1 вписан в окружность, поэтому $\angle C_1BC + \angle C_1B_1C = 180^\circ$.

Значит, $\angle AB_1C_1 = \angle C_1BC = \angle ABC$. Следовательно, треугольники ABC и AB_1C_1 подобны по двум углам.

б) Площадь треугольника AB_1C_1 в семь раз меньше площади четырёхугольника BCB_1C_1 , поэтому площадь треугольника ABC в восемь раз больше площади



треугольника AB_1C_1 и коэффициент подобия этих треугольников равен $2\sqrt{2}$.

Пусть $AB_1 = x$, тогда $AB = 2\sqrt{2}x$. Найдём BB_1 по теореме косинусов:

$$BB_1^2 = x^2 + 8x^2 - 4\sqrt{2}x \cdot x \cdot \cos 135^\circ = 13x^2$$
. Следовательно, $BB_1 = x\sqrt{13}$.

Теперь по теореме синусов из треугольника ABB_1 получаем

$$\frac{AB}{\sin \angle AB_1B} = \frac{BB_1}{\sin \angle A}; \quad \sin \angle AB_1B = \frac{AB}{BB_1}\sin \angle A.$$

Но $\sin \angle AB_1B = \sin \angle BB_1C$, поскольку синусы смежных углов равны. Получаем

$$\sin \angle BB_1C = \frac{AB}{BB_1}\sin \angle A = \frac{2\sqrt{2}x}{x\sqrt{13}} \cdot \frac{\sqrt{2}}{2} = \frac{2}{\sqrt{13}}.$$

Теперь находим радиус окружности, описанной около треугольника BCB_1 :

$$2R = \frac{BC}{\sin \angle BB_1C} = 10\sqrt{26}$$
; $R = 5\sqrt{26}$.

Ответ: б) $5\sqrt{26}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	

Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

17

15 сентября планируется взять кредит в банке на 12 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 5 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,59 млн рублей?

Решение.

Пусть сумма кредита равна *S*. Долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

$$S; \frac{11}{12}S; \frac{10}{12}S; ...; \frac{1}{12}S; 0.$$

По условию 1-го числа каждого месяца долг возрастает на 5 %. Значит, последовательность размеров долга по состоянию на 1-е число такова:

$$1,05S$$
; $1,05 \cdot \frac{11}{12}S$; $1,05 \cdot \frac{10}{12}S$; ...; $1,05 \cdot \frac{1}{12}S$.

Таким образом, выплаты должны быть следующими:

$$0.05S + \frac{S}{12}$$
; $\frac{11 \cdot 0.05S + S}{12}$; ...; $\frac{2 \cdot 0.05S + S}{12}$; $\frac{0.05S + S}{12}$.

Всего следует выплатить

$$S + S \cdot 0.05 \left(1 + \frac{11}{12} + \dots + \frac{2}{12} + \frac{1}{12} \right) = S \left(1 + \frac{13 \cdot 0.05}{2} \right) = 1.325S.$$

По условию $1{,}325S = 1{,}59$ млн рублей. Значит, сумма, взятая в кредит, равна $1{,}2$ млн рублей.

Ответ: 1,2 млн рублей.

C	Г
Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

Найдите все значения параметра a, при каждом из которых множество значений функции $y = \frac{5a - 15x + ax}{x^2 - 2ax + a^2 + 25}$ содержит отрезок [0;1].

Решение.

5

Запишем функцию в виде $y = \frac{5a - (15 - a)x}{(x - a)^2 + 25}$. Если при некоторых значениях a существуют такие числа x_0 , x_1 , что выполняются равенства

$$0 = \frac{5a - (15 - a)x_0}{(x_0 - a)^2 + 25}$$
 и
$$1 = \frac{5a - (15 - a)x_1}{(x_1 - a)^2 + 25}$$
, то отрезок [0; 1] будет

принадлежать множеству значений данной функции.

Первое уравнение: $0 = \frac{5a - (15 - a)x}{(x - a)^2 + 25}$; (15 - a)x = 5a. Уравнение имеет решение при любом $a \ne 15$.

Второе уравнение:
$$1 = \frac{5a - (15 - a)x}{(x - a)^2 + 25}$$
; $x^2 + 3(5 - a)x + a^2 - 5a + 25 = 0$.

Уравнение имеет решение тогда и только тогда, когда его дискриминант неотрицателен $D=9(5-a)^2-4(a^2-5a+25)\geq 0$; $5(a^2-14a+25)\geq 0$; $(a-7+2\sqrt{6})(a-7-2\sqrt{6})\geq 0$. Решение этого неравенства: $(-\infty;\ 7-2\sqrt{6}]$, $\left[7+2\sqrt{6};+\infty\right)$. Следовательно, условию задачи удовлетворяют только все значения $a\in (-\infty;\ 7-2\sqrt{6}]$, $\left[7+2\sqrt{6};15\right)$, $\left(15;+\infty\right)$.

Othet:
$$\left(-\infty; \ 7 - 2\sqrt{6}\right], \ \left[7 + 2\sqrt{6}; 15\right), \ \left(15; +\infty\right).$$

Баллы
4
3
2
1
0
4

19

На доске написаны все пятизначные числа, в десятичной записи которых по одному разу встречаются цифры 4, 5, 6, 7 и 8 (45678, 45687 и т. д.).

- а) Есть ли среди них число, которое делится на 55?
- б) Есть ли среди них число, которое делится на 505?
- в) Найдите наибольшее из этих чисел, делящееся на 11.

Решение.

- а) Да. Например, число $47685 = 55 \cdot 867$.
- б) Предположим, что такое число есть и его десятичная запись имеет вид \overline{abcde} , где $a,\ b,\ c,\ d$ и e это различные, расставленные в некотором (возможно, ином) порядке цифры 4, 5, 6, 7 и 8. Поскольку число \overline{abcde} делится на $505 = 101 \cdot 5$, получаем, что оно делится на 101 и 5.

Значит, e = 5. Имеем $\overline{abcde} = \overline{abcd5} = 100 \cdot \overline{abc} + \overline{d5} = 101 \cdot \overline{abc} - (\overline{abc} - \overline{d5})$.

Следовательно, разность \overline{abc} — $\overline{d5}$ делится на 101 и найдётся такое натуральное число $k \le 9$, что \overline{abc} — $\overline{d5}$ = $101 \cdot k$. Так как c может принимать значения 4, 6, 7 или 8, отсюда получаем, что k может принимать значения 9, 1, 2 или 3 соответственно. Если k=9, то a=9. Если $k\le 3$, то $a\le 3$. Пришли к противоречию.

в) Пусть \overline{abcde} — это десятичная запись какого-либо числа с доски. Имеем $\overline{abcde} = a \cdot 10^4 + b \cdot 10^3 + c \cdot 10^2 + d \cdot 10 + e =$ = $(a - b + c - d + e) + 11 \cdot (a \cdot 909 + b \cdot 91 + c \cdot 9 + d)$.

Число \overline{abcde} делится на 11 тогда и только тогда, когда число a-b+c-d+e делится на 11. Сумма цифр каждого из чисел с доски равна a+b+c+d+e=4+5+6+7+8=30. Значит, a-b+c-d+e=30-2(b+d).

Поскольку b+d может принимать значения от 9 до 15, получаем, что число \overline{abcde} делится на 11 тогда и только тогда, когда b+d=15, то есть когда b и d — это различные, расставленные в некотором (возможно, ином) порядке

© СтатГрад 2019-2020 уч. г.

цифры 7 и 8. Среди чисел указанного вида наибольшим числом на доске является 68574.

Ответ: : а) Да; б) нет; в) 68574.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах a и δ , либо	3
получены верные обоснованные ответы в пунктах a и b	
Получен верный обоснованный ответ в пункте δ , пункты a и b не	2
решены, либо получен верный обоснованный ответ в пункте ϵ ,	
пункты a и δ не решены	
Приведён пример в пункте a , пункты δ и ϵ не решены	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4