Тренировочная работа №5 по МАТЕМАТИКЕ 11 класс

27 апреля 2023 года Вариант MA2210512 (профильный уровень)

Выполнена: ФИС)	класс	

Инструкция по выполнению работы

Работа по математике состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-11 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 12–18 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

© СтатГрад 2022-2023 уч. г.

Математика. 11 класс. Вариант МА2210512

Часть 1

2

Ответом к каждому из заданий 1–11 является целое число или конечная десятичная дробь. Запишите ответы к заданиям в поле ответа в тексте работы.

1	Через концы A и B дуги окружности с центром O проведены касательные AC и BC . Меньшая дуга AB равна 52° . Найдите угол ACB . Ответ дайте в градусах.
	Ответ:
2	В сосуде, имеющем форму конуса, уровень жидкости достигает $\frac{1}{2}$ высоты. Объём жидкости равен 48 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?
	Ответ:
3	На олимпиаде по русскому языку 400 участников разместили в трё аудиториях. В первых двух удалось разместить по 180 человек, оставшихс перевели в запасную аудиторию в другом корпусе. Найдите вероятност того, что случайно выбранный участник писал олимпиаду в запаснов аудитории.
	Ответ:
4	Перед началом футбольного матча судья бросает монетку, чтобы определить какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матч с разными командами. Найдите вероятность того, что в этих играх «Сапфирвыиграет жребий ровно два раза.
	Otret'

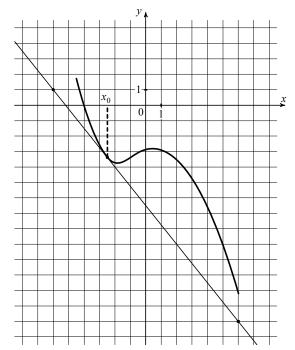
Решите уравнение $\frac{8}{x^2-17}$ = 1. Если уравнение имеет больше одного корня, в ответе запишите меньший из корней.

Ответ: .

6 Найдите значение выражения $\log_{0.65} 20 - \log_{0.65} 13$.

Ответ: ______.

7 На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .



Ответ: _____

© СтатГрад 2022-2023 уч. г.

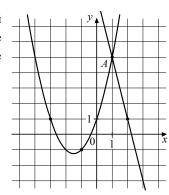
8	Коэффициент полезного действия (КПД) некоторого двигателя определяется
	формулой $\eta = \frac{T_1 - T_2}{T_1} \cdot 100 \%$, где T_1 — температура нагревателя
	(в кельвинах), T_2 — температура холодильника (в кельвинах). При какой
	температуре нагревателя T_1 КПД этого двигателя будет равна 50 %, если
	температура холодильника $T_2 = 325 \text{ K}$? Ответ дайте в кельвинах.

Ответ: _____

9 Автомобиль выехал с постоянной скоростью 64 км/ч из города А в город В, расстояние между которыми равно 192 км. Одновременно с ним из города С в город В, расстояние между которыми равно 136 км, с постоянной скоростью выехал мотоциклист. По дороге он сделал остановку на 20 минут. В результате автомобиль и мотоцикл прибыли в город В одновременно. Найдите скорость мотоциклиста. Ответ дайте в км/ч.

Ответ: ______.

На рисунке изображены графики функций f(x) = -4x + 9 и $g(x) = ax^2 + bx + c$, которые пересекаются в точках A и B. Найдите ординату точки B.



Ответ: ______.

11 Найдите наибольшее значение функции $y = 20 + 18x - 2x\sqrt{x}$ на отрезке [34; 42].

Ответ: ______.

3

Часть 2

5

Для записи решений и ответов на задания 12–18 используйте отдельный лист. Запишите сначала номер выполняемого задания (12, 13 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 12
- а) Решите уравнение $\frac{3 \lg^2 x 1}{2 \sin x + 1} = 0$.
- б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- 13
- В правильной треугольной призме $ABCA_1B_1C_1$ длина ребра основания равна 10, а длина бокового ребра равна 5.
- а) Докажите, что сечение призмы плоскостью α , проходящей через середину ребра AB перпендикулярно отрезку, соединяющему середины рёбер BC и A_1B_1 , делит ребро AC в отношении 1:3, считая от вершины A.
- б) Найдите площадь сечения призмы плоскостью а.
- 14

Решите неравенство $2^x \cdot 25^{\frac{1}{x}} > 20$.

- 15
- 15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
- 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца нужно внести один платёж для погашения долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что восьмой платёж равен 74,4 тыс. рублей. Найдите сумму всех платежей, которые будут выплачены банку в течение всего срока кредитования.

- В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности.
 - а) Докажите, что треугольник АВС равнобедренный.
 - б) Пусть P точка пересечения биссектрис этого треугольника. Найдите площадь четырёхугольника AMPN, если MN:BC=3:5, BN=12.
- 17 Найдите все значения a, при каждом из которых уравнение

$$\sqrt{2^x - a} + \frac{a - 5}{\sqrt{2^x - a}} = 1$$

имеет ровно два различных корня.

- Каждый из группы учащихся сходил в зоопарк или в музей, при этом возможно, что кто-то из них сходил и в зоопарк, и в музей. Известно, что в музее мальчиков было не более $\frac{5}{11}$ от общего числа учащихся группы, посетивших музей, а в зоопарке мальчиков было не более $\frac{1}{5}$ от общего числа учащихся группы, посетивших зоопарк.
 - а) Могло ли быть в группе 15 мальчиков, если дополнительно известно, что всего в группе было 30 учащихся?
 - б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 30 учащихся?
 - в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов *а* и *б*?

math100.ru
Ответы на тренировочные варианты 2210509-2210512 (профильный уровень) от 27.04.2023

	1	2	3	4	5	6	7	8	9	10	11
2210509	40	5	0,2	5,25	- 5	- 3	0,25	34,5	240	- 2	- 49
2210510	44	6	0,7	4,8	- 4	- 4	0,5	97	180	3	- 2
2210511	100	390	0,2	0,375	- 3	- 1	- 1,75	440	64	39	269
2210512	128	336	0,1	0,375	- 5	- 1	- 1,25	650	51	41	236

2

Критерии оценивания заданий с развёрнутым ответом

12

- а) Решите уравнение $\frac{3 \lg^2 x 1}{2 \sin x + 1} = 0$.
- б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$.

Решение.

а) Перейдём к системе:

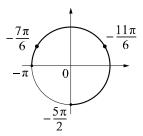
$$\begin{cases} \lg^2 x = \frac{1}{3}, \\ \sin x \neq -\frac{1}{2}, \end{cases}$$
 откуда следует, что $\lg x = -\frac{1}{\sqrt{3}}$ или $\lg x = \frac{1}{\sqrt{3}}$ при условии $\sin x \neq -\frac{1}{2}.$

Получаем $x = \frac{\pi}{6} + 2\pi k$, $k \in \mathbf{Z}$, или $x = \frac{5\pi}{6} + 2\pi n$, $n \in \mathbf{Z}$.

б) Отберём корни на отрезке $\left[-\frac{5\pi}{2}; -\pi\right]$

с помощью единичной окружности.

Получим числа
$$-\frac{11\pi}{6}$$
; $-\frac{7\pi}{6}$.



Ответ: a)
$$\frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$; $\frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{11\pi}{6}$; $-\frac{7\pi}{6}$.

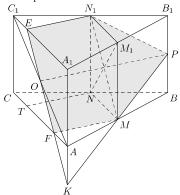
Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- В правильной треугольной призме $ABCA_1B_1C_1$ длина ребра основания равна 10, а длина бокового ребра равна 5.
 - а) Докажите, что сечение призмы плоскостью α , проходящей через середину ребра AB перпендикулярно отрезку, соединяющему середины рёбер BC и A_1B_1 , делит ребро AC в отношении 1:3, считая от вершины A.
 - б) Найдите площадь сечения призмы плоскостью а.

Решение.

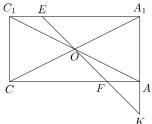
а) Пусть точки M, N, M_1 и N_1 — середины рёбер AB, BC, A_1B_1 и B_1C_1 . Четырёхугольник MNN_1M_1 является квадратом, поэтому его диагонали MN_1 и NM_1 перпендикулярны и точкой пересечения делятся пополам.

Пусть точка P — середина BB_1 , а точка O — центр грани ACC_1A_1 . Прямая OP перпендикулярна плоскости MNN_1 , поэтому прямая OP перпендикулярна прямой M_1N .



Прямая $N\!M_1$ перпендикулярна прямым $M\!N_1$ и $O\!P$, поэтому плоскость α проходит через пересекающиеся прямые $M\!N_1$ и $O\!P$.

Пусть прямые PM и AA_1 пересекаются в точке K, а прямая OK пересекает рёбра AC и A_1C_1 в точках F и E соответственно. Пятиугольник EN_1PMF — сечение призмы плоскостью α .



Из равенства треугольников PBM и KAM следует, что AK = PB, поэтому $A_1K = 5 + 2, 5 = 7, 5$. Из подобия треугольников EA_1K и FAK следует, что $\frac{EA_1}{FA} = \frac{A_1K}{AK} = \frac{3}{1}$, а $C_1E = FA$, значит, $CF = EA_1$ и CF : FA = 3:1.

б) Плоскости ABC и α пересекаются по прямой FM. Прямая M_1N перпендикулярна плоскости α , следовательно, плоскости MNN_1M_1 и α перпендикулярны. Значит, угол N_1MN — это линейный угол двугранного угла между плоскостями ABC и α , $\angle N_1MN = 45^\circ$. Пятиугольник TFMBN является ортогональной проекцией пятиугольника EN_1PMF на плоскость ABC. Имеем

$$S_{CNT}=S_{C_1N_1E}=\frac{1}{4}\cdot\frac{1}{2}S_{ABC}\text{, и аналогично }S_{FMA}=\frac{1}{8}S_{ABC}\text{.}$$
 Значит, $S_{TFMBN}=\frac{3}{4}S_{ABC}=\frac{75\sqrt{3}}{4}$ и $S_{EN_1PMF}=\frac{75\sqrt{3}}{4}$: $\cos45^\circ=\frac{75\sqrt{6}}{4}$.
 Ответ: 6) $\frac{75\sqrt{6}}{4}$.

_	
Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и	3
обоснованно получен верный ответ в пункте б	İ
Получен обоснованный ответ в пункте δ .	2
ИЛИ	İ
Имеется верное доказательство утверждения пункта а, и при	İ
обоснованном решении пункта б получен неверный ответ из-за	İ
арифметической ошибки	ı
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	ı
При обоснованном решении пункта δ получен неверный ответ из-за	ı
арифметической ошибки.	ı
и́ли́	İ
Обоснованно получен верный ответ в пункте δ с использованием	ı
утверждения пункта a , при этом пункт a не выполнен	ı
Решение не соответствует ни одному из критериев, приведённых	0
выше	ı
Максимальный балл	3

Решите неравенство $2^x \cdot 25^{\frac{1}{x}} > 20$.

Решение.

Прологарифмируем обе части неравенства по основанию 2:

© СтатГрад 2022-2023 уч. г.

$$x + \frac{1}{x}\log_2 25 > \log_2 20; \quad \frac{x^2 - x\log_2 20 + \log_2 25}{x} > 0;$$
$$\frac{x^2 - (2 + \log_2 5)x + 2\log_2 5}{x} > 0; \quad \frac{(x - 2)(x - \log_2 5)}{x} > 0,$$

откуда 0 < x < 2 или $x > \log_2 5$.

Ответ: (0;2); $(\log_2 5; +\infty)$.

Содержание критерия	
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного включением	1
точек 2 и/или $\log_2 5$.	
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	
выше	
Максимальный балл	2

- 15 15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
 - 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
 - со 2-го по 14-е число каждого месяца нужно внести один платёж для погашения долга;
 - 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что восьмой платёж равен 74,4 тыс. рублей. Найдите сумму всех платежей, которые будут выплачены банку в течение всего срока кредитования.

Решение.

Пусть сумма кредита равна S. По условию долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

$$S; \frac{14S}{15}; \dots; \frac{2S}{15}; \frac{S}{15}; 0.$$

Первого числа каждого месяца долг возрастает на 3 %, значит, последовательность размеров долга по состоянию на 1-е число такова:

$$1,03S; 1,03 \cdot \frac{14S}{15}; ...; 1,03 \cdot \frac{2S}{15}; 1,03 \cdot \frac{S}{15}.$$

Таким образом, платежи должны быть следующими:

$$0.03S + \frac{S}{15}$$
; $\frac{14 \cdot 0.03S + S}{15}$; ...; $\frac{2 \cdot 0.03S + S}{15}$; $\frac{0.03S + S}{15}$.

© СтатГрад 2022-2023 уч. г.

Восьмой платёж составит
$$\frac{8 \cdot 0.03 \cdot S + S}{15} = \frac{1.24S}{15}$$
.

Сумма всех платежей равна:

$$S + S \cdot 0.03 \left(1 + \frac{14}{15} + \dots + \frac{2}{15} + \frac{1}{15} \right) = S \left(1 + \frac{16 \cdot 0.03}{2} \right) = 1.24S.$$

Значит, банку будет выплачено $74400 \cdot 15 = 1116000$ рублей.

Ответ: 1 116 000 рублей.

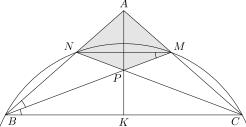
Содержание критерия	
Обоснованно получен верный ответ	2
Верно построена математическая модель	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

В треугольнике ABC проведены биссектрисы BM и CN. Оказалось, что точки B, C, M и N лежат на одной окружности.

- а) Докажите, что треугольник *ABC* равнобедренный.
- б) Пусть P точка пересечения биссектрис этого треугольника. Найдите площадь четырёхугольника AMPN, если MN:BC=3:5, BN=12.

Решение.

а) Вписанные углы MBN и MCN опираются на одну и ту же дугу MNокружности, значит, эти углы равны. Поскольку BM и CN — биссектрисы углов ABC и BCA, получаем, что $\angle ABC = 2\angle MBN = 2\angle MCN = \angle BCA$, и, следовательно, треугольник АВС равнобедренный.



б) Пусть прямая AP пересекает сторону BC в точке K . Тогда AK — высота и медиана равнобедренного треугольника АВС. По свойству биссектрисы треугольника AM:MC=AB:BC=AC:BC=AN:NB. Значит, по обратной теореме Фалеса прямые MN и BC параллельны. Тогда $\angle BMN = \angle CBM = \angle MBN$ и треугольник BMN равнобедренный, BN = MN.

По условию MN: BC = 3:5. Пусть BN = MN = 3a, BC = 5a (где $a = \frac{12}{3} = 4$).

Математика. 11 класс. Вариант МА2210512

Поскольку AN: NB = AB: BC, получаем, что $\frac{AN}{3a} = \frac{AN + 3a}{5a}$, следовательно, $AN = \frac{9}{2}a$ и $AB = 3a + \frac{9}{2}a = \frac{15}{2}a$.

Из прямоугольного треугольника АВК находим

$$AK = \sqrt{AB^2 - BK^2} = \sqrt{\frac{225}{4}a^2 - \frac{25}{4}a^2} = a\sqrt{\frac{200}{4}} = 5\sqrt{2}a$$
.

Отрезок BP — биссектриса треугольника ABK, значит,

$$AP: PK = AB: BK = \frac{15}{2}: \frac{5}{2} = 3:1$$
, следовательно, $AP = \frac{3}{4}AK = \frac{15}{4}\sqrt{2}a$.

Прямая AK перпендикулярна прямой BC, прямая BC параллельна прямой MN, значит, прямая AP перпендикулярна прямой MN. Тогда $S_{AMPN} = \frac{1}{2}MN \cdot AP = \frac{1}{2} \cdot 12 \cdot \frac{15}{4} \sqrt{2} \cdot 4 = 90\sqrt{2} \; .$

Ответ: 6) $90\sqrt{2}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и	3
обоснованно получен верный ответ в пункте δ	
Получен обоснованный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта a , и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	3

7

Найдите все значения a, при каждом из которых уравнение

$$\sqrt{2^x - a} + \frac{a - 5}{\sqrt{2^x - a}} = 1$$

имеет ровно два различных корня.

Решение.

Исходное уравнение имеет ровно два различных корня тогда и только тогда, когда уравнение

$$\sqrt{t-a} + \frac{a-5}{\sqrt{t-a}} = 1$$

имеет ровно два различных положительных корня.

При $t \le a$ левая часть уравнения не определена, а при t > a уравнение принимает вид $t-5=\sqrt{t-a}$. При t < 5 левая часть полученного уравнения отрицательна, а правая неотрицательна, поэтому полученное уравнение не имеет корней, меньших 5.

При t > a и $t \ge 5$ получаем: $t^2 - 10t + 25 = t - a$; $t^2 - 11t + (a + 25) = 0$.

Дискриминант полученного квадратного уравнения равен

$$121 - 4(a + 25) = 21 - 4a.$$

Значит, уравнение имеет ровно два корня при $a < \frac{21}{4}$.

При каждом из значений $a<\frac{21}{4}$ графиком функции $f(t)=t^2-11t+(a+25)$ является парабола с ветвями, направленными вверх, и вершиной в точке $\left(\frac{11}{2};a-\frac{21}{4}\right)$. Пусть t_0 — меньший корень уравнения f(t)=0. Поскольку $5<\frac{11}{2}$ и $a<\frac{21}{4}<\frac{11}{2}$, неравенства $t_0\geq 5$ и $t_0>a$ выполняются тогда и только тогда, когда $f(5)\geq 0$ и f(a)>0. Получаем: $a-5\geq 0$ и $a^2-10a+25>0$, следовательно, a>5.

Таким образом, исходное уравнение имеет ровно два различных корня при

$$5 < a < \frac{21}{4}$$
.

Ответ: $5 < a < \frac{21}{4}$.

Содержание критерия Баллы Обоснованно получен верный ответ С помощью верного рассуждения получено множество значений а, отличающееся от искомого только включением точки a = 5.25С помощью верного рассуждения получено множество значений а, отличающееся от искомого только включением двух точек a = 5, a = 5.25. ИЛИ Получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения Залача исследованию корней $t^2 - 11t + (a + 25) = 0$ при условиях t > a и $t \ge 5$ для всех значений aРешение не соответствует ни одному из критериев, перечисленных выше Максимальный балл

Каждый из группы учащихся сходил в зоопарк или в музей, при этом возможно, что кто-то из них сходил и в зоопарк, и в музей. Известно, что в музее мальчиков было не более $\frac{5}{11}$ от общего числа учащихся группы, посетивших музей, а в зоопарке мальчиков было не более $\frac{1}{5}$ от общего числа учащихся группы, посетивших зоопарк.

- а) Могло ли быть в группе 15 мальчиков, если дополнительно известно, что всего в группе было 30 учащихся?
- б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 30 учащихся?
- в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов a и 6?

Решение.

- а) Если группа состоит из 12 мальчиков, посетивших только музей, 3 мальчиков, посетивших только зоопарк, и 15 девочек, сходивших и в музей, и в зоопарк, то условие задачи выполнено. Значит, в группе из 30 учащихся могло быть 15 мальчиков.
- б) Предположим, что мальчиков было 16 или больше. Тогда девочек было 14 или меньше. Музей посетило не более 11 мальчиков, поскольку если бы их было 12 или больше, то доля мальчиков в музее была бы не меньше 12 6

$$\frac{12}{12+14} = \frac{6}{13}$$
, что больше $\frac{5}{11}$. Аналогично зоопарк посетило не более

[©] СтатГрад 2022-2023 уч. г.

Математика. 11 класс. Вариант МА2210512

3 мальчиков, поскольку $\frac{4}{4+14} = \frac{2}{9} > \frac{1}{5}$, но тогда хотя бы два мальчика не посетили ни музей, ни зоопарк, что противоречит условию.

9

В предыдущем пункте было показано, что в группе из 30 учащихся могло быть 15 мальчиков. Значит, наибольшее количество мальчиков в группе — 15.

в) Предположим, что некоторый мальчик сходил и в музей, и в зоопарк. Если бы вместо него в группе присутствовало два мальчика, один из которых посетил только музей, а другой — только зоопарк, то доля мальчиков и в музее, и в зоопарке осталась бы прежней, а общая доля девочек стала бы меньше. Значит, для оценки наименьшей доли девочек в группе можно считать, что каждый мальчик сходил или только в музей, или только в зоопарк.

Пусть в группе m_1 мальчиков, посетивших музей, m_2 мальчиков, посетивших зоопарк, и d девочек. Оценим долю девочек в этой группе. Будем считать, что все девочки ходили и в музей, и в зоопарк, поскольку их доля в группе от этого не изменится, а доля в музее и в зоопарке не уменьшится.

По условию
$$\frac{m_1}{m_1+d} \leq \frac{5}{11}$$
, $\frac{m_2}{m_2+d} \leq \frac{1}{5}$, значит, $\frac{m_1}{d} \leq \frac{5}{6}$, $\frac{m_2}{d} \leq \frac{1}{4}$. Тогда

 $\frac{m_1 + m_2}{d} \le \frac{13}{12}$, поэтому для доли девочек в группе выполняется оценка

$$\frac{d}{m_1 + m_2 + d} = \frac{1}{\frac{m_1 + m_2}{d} + 1} \ge \frac{1}{\frac{13}{12} + 1} = \frac{12}{25}.$$

Если группа состоит из 10 мальчиков, посетивших только музей, 3 мальчиков, посетивших только зоопарк, и 12 девочек, сходивших и в музей, и в зоопарк, то условие задачи выполнено, а доля девочек в группе равна $\frac{12}{25}$.

Ответ: а) да; б) 15; в) $\frac{12}{25}$.

Содержание критерия		
Обоснованно получены верные ответы в пунктах a , δ и ϵ	4	
Обоснованно получен верный ответ в пункте e , и обоснованно получен верный ответ в пункте a или δ	3	
Обоснованно получены верные ответы в пунктах <i>а</i> и <i>б</i> . ИЛИ	2	
Обоснованно получен верный ответ в пункте в		
Обоснованно получен верный ответ в пункте а или б		
Решение не соответствует ни одному из критериев, перечисленных	0	
выше		
Максимальный балл	4	

[©] СтатГрад 2022–2023 уч. г.