# Тренировочная работа №4 по МАТЕМАТИКЕ 11 класс

20 марта 2024 года Вариант МА2310410 (профильный уровень)

| Выполнена: ФИС | класс |  |
|----------------|-------|--|
|                |       |  |

## Инструкция по выполнению работы

Работа по математике состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

# Желаем успеха!

# Справочные материалы

 $\begin{aligned} \sin 2\alpha &= 2\sin\alpha \cdot \cos\alpha \\ \cos 2\alpha &= \cos^2\alpha - \sin^2\alpha \\ \sin(\alpha + \beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \\ \cos(\alpha + \beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \end{aligned}$ 

© СтатГрад 2023—2024 уч. г.

Математика. 11 класс. Вариант МА2310410

### Часть 1

2

Ответом к каждому из заданий 1–12 является целое число или конечная десятичная дробь. Запишите ответы к заданиям в поле ответа в тексте работы.

| 1 | Найдите хорду, на которую опирается угол $120^\circ$ , вписанный в окружность радиусом $42\sqrt{3}$ .                                                                                                                                               |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Ответ:                                                                                                                                                                                                                                              |
| 2 | Даны векторы $\vec{a}(2,5;6)$ и $\vec{b}(-4;3)$ . Найдите скалярное произведение $\vec{a}\cdot\vec{b}$ .                                                                                                                                            |
|   | Ответ:                                                                                                                                                                                                                                              |
| 3 | Стороны основания правильной шестиугольной пирамиды равны 16, боковые рёбра равны 17. Найдите площадь боковой поверхности этой пирамиды.                                                                                                            |
|   | Ответ:                                                                                                                                                                                                                                              |
| 4 | В группе туристов 25 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 5 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист У. полетит четвёртым рейсом вертолёта. |
|   | Ornari                                                                                                                                                                                                                                              |

3

5 Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Ответ: \_\_\_\_\_\_.

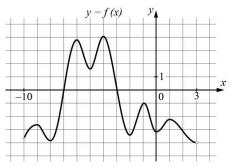
**6** Найдите корень уравнения  $\log_6(5-x) = 2$ .

Ответ: \_\_\_\_\_\_.

Тайдите значение выражения  $\frac{(4a)^{4,5}}{a^4 \sqrt{a}}$  при  $a = \frac{\sqrt{11}}{8}$ .

Ответ: \_\_\_\_\_\_.

**8** На рисунке изображён график функции y = f(x), определённой на интервале (-10;3). Найдите количество решений уравнения f'(x) = 0 на отрезке [-7,5;-2,5].



Ответ: \_\_\_\_\_\_.

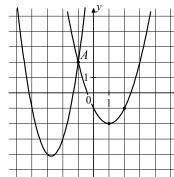
9 Автомобиль, движущийся в начальный момент времени со скоростью  $v_0=19\,$  м/с, начал торможение с постоянным ускорением  $a=2\,$  м/с  $^2$ . За t секунд после начала торможения он прошел путь  $S=v_0t-\frac{at^2}{2}\,$  (м). Определите время, прошедшее от момента начала торможения, если известно, что за это время автомобиль проехал 90 метров. Ответ дайте в секундах.

Ответ:\_\_\_\_\_\_.

B сосуд, содержащий 10 литров 18-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Ответ: \_\_\_\_\_\_.

11 На рисунке изображены графики функций  $f(x) = 2x^2 + 11x + 11 \quad \text{и} \quad g(x) = ax^2 + bx + c,$  которые пересекаются в точках A и B. Найдите абсциссу точки B.



Otret.

**12** Найдите наименьшее значение функции  $y = \log_7(x^2 + 4x + 53) - 4$ .

Ответ: \_\_\_\_\_\_.

## Часть 2

5

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13
- а) Решите уравнение  $\sqrt{2\sin^2 x 2\sin x + 7} = \sqrt{\sin x + 9}$ .
- б) Найдите все корни этого уравнения, принадлежащие отрезку  $\left[-4\pi; -\frac{5\pi}{2}\right]$ .
- 14

В правильной четырёхугольной пирамиде SABCD сторона основания AB равна 12, а боковое ребро SA равно 17. На рёбрах AB и SB отмечены точки M и K соответственно, причём AM = SK = 7. Плоскость  $\alpha$  перпендикулярна плоскости ABC и содержит точки M и K.

- а) Докажите, что плоскость  $\alpha$  содержит точку C.
- б) Найдите площадь сечения пирамиды SABCD плоскостью  $\alpha$ .
- 15

Решите неравенство  $3 \cdot \frac{8^x - 1}{2^x - 1} + \frac{20}{4^x + 2^x + 1} \le 19$ .

16

15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного его погашения равнялась 2,3 млн рублей?

- 17 Две окружности разных радиусов касаются внешним образом в точке C. Вершины A и B равнобедренного прямоугольного треугольника ABC с прямым углом C лежат на меньшей и большей окружностях соответственно. Прямая AC вторично пересекает большую окружность в точке E, а прямая BC вторично пересекает меньшую окружность в точке D.
  - а) Докажите, что прямые AD и BE параллельны. б) Найдите BC, если радиусы окружностей равны 2 и  $\sqrt{5}$ .
- **18** Найдите все значения a, при каждом из которых уравнение

$$\frac{x-2a}{x+1} + \frac{x-2}{x-a} = 1$$

имеет ровно один корень.

- На окружности некоторым образом расставили натуральные числа от 4 до 27 (каждое число поставлено по одному разу). Затем для каждой пары соседних чисел нашли разность большего и меньшего.
  - а) Могли ли все полученные разности быть не меньше 12?
  - б) Могли ли все полученные разности быть не меньше 11?
  - в) Помимо полученных разностей соседних чисел, для каждой пары чисел, стоящих через одно, нашли разность большего и меньшего. Для какого наибольшего целого числа k можно так расставить числа, чтобы все разности (соседних чисел и чисел, стоящих через одно) были не меньше k?

math100.ru
Ответы на тренировочные варианты 2310409-2310412 (профильный уровень) от 20.03.2024

|         | 1   | 2   | 3    | 4    | 5      | 6    | 7    | 8   | 9  | 10 | 11   | 12  |
|---------|-----|-----|------|------|--------|------|------|-----|----|----|------|-----|
| 2310409 | 105 | 7   | 1008 | 0,1  | 0,992  | - 26 | 1024 | 2   | 8  | 14 | - 6  | - 8 |
| 2310410 | 126 | 8   | 720  | 0,2  | 0,973  | - 31 | 512  | 3   | 9  | 12 | - 12 | - 2 |
| 2310411 | 24  | - 2 | 8500 | 0,38 | 0,9951 | 24   | 10   | 0,5 | 60 | 15 | 56   | 8   |
| 2310412 | 42  | - 9 | 3280 | 0,26 | 0,9936 | 72   | 14   | 0,5 | 30 | 18 | 167  | 2   |

# Критерии оценивания заданий с развёрнутым ответом

13

- a) Решите уравнение  $\sqrt{2\sin^2 x 2\sin x + 7} = \sqrt{\sin x + 9}$ .
- б) Найдите все корни этого уравнения, принадлежащие отрезку  $\left[-4\pi; -\frac{5\pi}{2}\right]$ .

# Решение.

а) Исходное уравнение равносильно системе:

$$\begin{cases} 2\sin^2 x - 2\sin x + 7 = \sin x + 9, & 2\sin^2 x - 2\sin x + 7 = \sin x + 9; \\ \sin x + 9 \ge 0; & \end{cases}$$

$$2\sin^2 x - 3\sin x - 2 = 0.$$

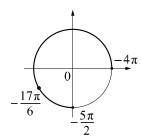
Пусть  $y = \sin x$ . Получаем уравнение  $2y^2 - 3y - 2 = 0$ , откуда y = 2 или  $y = -\frac{1}{2}$ .

Уравнение  $\sin x = 2$  корней не имеет.

Уравнение  $\sin x = -\frac{1}{2}$  имеет корни  $x = -\frac{5\pi}{6} + 2\pi k$ ,  $k \in \mathbb{Z}$ ;  $x = -\frac{\pi}{6} + 2\pi n$ ,  $n \in \mathbb{Z}$ .

б) C помощью тригонометрической окружности отберём корни уравнения, принадлежащие отрезку  $\left[-4\pi;-\frac{5\pi}{2}\right]$ .

Получим число  $-\frac{17\pi}{6}$ .



**Ответ**: a)  $-\frac{5\pi}{6} + 2\pi k$ ,  $k \in \mathbb{Z}$ ;  $-\frac{\pi}{6} + 2\pi n$ ,  $n \in \mathbb{Z}$ ; 6)  $-\frac{17\pi}{6}$ .

| Содержание критерия                                             | Баллы |
|-----------------------------------------------------------------|-------|
| Обоснованно получены верные ответы в обоих пунктах              | 2     |
| Обоснованно получен верный ответ в пункте а.                    | 1     |
| ИЛИ                                                             |       |
| Получены неверные ответы из-за вычислительной ошибки, но при    |       |
| этом имеется верная последовательность всех шагов решения обоих |       |
| пунктов: пункта $a$ и пункта $\delta$                           |       |

© СтатГрад 2023-2024 уч. г.

| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
|---------------------------------------------------------------------|---|
| Максимальный балл                                                   | 2 |

- В правильной четырёхугольной пирамиде SABCD сторона основания AB равна 12, а боковое ребро SA равно 17. На рёбрах AB и SB отмечены точки M и K соответственно, причём AM = SK = 7. Плоскость  $\alpha$  перпендикулярна плоскости ABC и содержит точки M и K.
- а) Докажите, что плоскость  $\alpha$  содержит точку C.
- б) Найдите площадь сечения пирамиды SABCD плоскостью а.

#### Решение.

14

а) Пусть прямая BD пересекает плоскость  $\alpha$  в точке H (рис. 1), а SO — высота пирамиды SABCD. Поскольку пирамида SABCD правильная, центр квадрата ABCD совпадает с точкой O. Значит, прямая SO лежит в плоскости SBD (рис. 2). Следовательно, плоскость SBD перпендикулярна плоскости ABC.

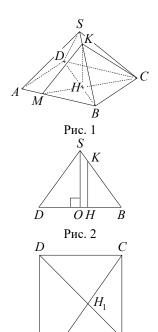
Получаем, что прямая KH, являющаяся прямой пересечения плоскостей SBD и  $\alpha$ , перпендикулярна плоскости ABC и параллельна прямой SO. В треугольнике SOB имеем

$$BH = \frac{KB}{SB} \cdot OB = \frac{KB}{SB} \cdot \frac{BD}{2} = \frac{5}{17}BD$$
.

Рассмотрим квадрат ABCD (рис. 3). Пусть прямые BD и CM пересекаются в точке  $H_1$ . Треугольники  $MH_1B$  и  $CH_1D$  подобны по двум углам. Получаем

$$BH_1 = \frac{BM}{CD} \cdot DH_1 = \frac{5}{12}DH_1$$
;  $BH_1 = \frac{5}{17}BD$ .

Таким образом, прямая CM делит отрезок BD в таком же отношении, что и плоскость  $\alpha$ , значит, плоскость  $\alpha$  содержит точку C.



M

Рис. 3

A

3

б) Из доказанного в пункте a следует, что искомое сечение — треугольник  $\mathit{CKM}$  .

В треугольнике *SOB* имеем

$$OB = \frac{BD}{2} = \frac{AB\sqrt{2}}{2} = 6\sqrt{2}; SO = \sqrt{SB^2 - OB^2} = \sqrt{289 - 72} = \sqrt{217};$$
$$KH = \frac{KB}{SB} \cdot SO = \frac{10}{17} \cdot \sqrt{217} = \frac{10\sqrt{217}}{17}.$$

В прямоугольном треугольнике ВСМ имеем

$$CM = \sqrt{BM^2 + BC^2} = 13.$$

Отрезок KH перпендикулярен плоскости ABC, а значит, и прямой CM. Следовательно, он является высотой треугольника CKM. Площадь треугольника CKM равна

$$\frac{CM \cdot KH}{2} = \frac{65\sqrt{217}}{17}.$$

**Ответ:** б) 
$$\frac{65\sqrt{217}}{17}$$
.

| 1 /                                                                   |       |
|-----------------------------------------------------------------------|-------|
| Содержание критерия                                                   | Баллы |
| Имеется верное доказательство утверждения пункта а, и                 | 3     |
| обоснованно получен верный ответ в пункте $\delta$                    |       |
| Получен обоснованный ответ в пункте $\delta$ .                        | 2     |
| ИЛИ                                                                   |       |
| Имеется верное доказательство утверждения пункта а, и при             |       |
| обоснованном решении пункта $\delta$ получен неверный ответ из-за     |       |
| арифметической ошибки                                                 |       |
| Имеется верное доказательство утверждения пункта а.                   | 1     |
| ИЛИ                                                                   |       |
| При обоснованном решении пункта $\delta$ получен неверный ответ из-за |       |
| арифметической ошибки.                                                |       |
| ЙЛЙ                                                                   |       |
| Обоснованно получен верный ответ в пункте $\delta$ с использованием   |       |
| утверждения пункта $a$ , при этом пункт $a$ не выполнен               |       |
| Решение не соответствует ни одному из критериев, приведённых          | 0     |
| выше                                                                  |       |
| Максимальный балл                                                     | 3     |

15

Решите неравенство  $3 \cdot \frac{8^x - 1}{2^x - 1} + \frac{20}{4^x + 2^x + 1} \le 19$ .

## Решение.

Преобразуем исходное неравенство:

$$\frac{3(2^{x}-1)(4^{x}+2^{x}+1)}{2^{x}-1} + \frac{20}{4^{x}+2^{x}+1} \le 19;$$
$$3(4^{x}+2^{x}+1) + \frac{20}{4^{x}+2^{x}+1} \le 19 \text{ при } x \ne 0.$$

Сделаем замену  $y = 4^x + 2^x + 1$ . С учётом того, что y > 0, получаем:

$$3y + \frac{20}{y} \le 19$$
;  $3y^2 - 19y + 20 \le 0$ ;  $(3y - 4)(y - 5) \le 0$ ;  $\frac{4}{3} \le y \le 5$ ,

откуда  $\frac{4}{3} \le 4^x + 2^x + 1 \le 5$  при  $x \ne 0$ .

Решение неравенства  $4^{x} + 2^{x} + 1 \ge \frac{4}{3}$ :

$$3\left(2^{x}\right)^{2} + 3 \cdot 2^{x} - 1 \ge 0; \quad \left(2^{x} + \frac{\sqrt{21} + 3}{6}\right) \left(2^{x} - \frac{\sqrt{21} - 3}{6}\right) \ge 0; \quad 2^{x} \ge \frac{\sqrt{21} - 3}{6},$$

откуда  $x \ge \log_2\left(\frac{\sqrt{21}-3}{6}\right)$ .

Решение неравенства  $4^{x} + 2^{x} + 1 \le 5$ :

$$\left(2^{x}\right)^{2} + 2^{x} - 4 \le 0; \quad \left(2^{x} + \frac{\sqrt{17} + 1}{2}\right) \left(2^{x} - \frac{\sqrt{17} - 1}{2}\right) \le 0; \quad 2^{x} \le \frac{\sqrt{17} - 1}{2},$$

откуда  $x \le \log_2\left(\frac{\sqrt{17}-1}{2}\right)$ .

Решение исходного неравенства:  $\log_2 \frac{\sqrt{21} - 3}{6} \le x < 0$ ,  $0 < x \le \log_2 \frac{\sqrt{17} - 1}{2}$ .

**Ответ:** 
$$\left[\log_2 \frac{\sqrt{21} - 3}{6}; 0\right]; \left(0; \log_2 \frac{\sqrt{17} - 1}{2}\right]$$

| Содержание критерия                                                                     | Баллы |
|-----------------------------------------------------------------------------------------|-------|
| Обоснованно получен верный ответ                                                        | 2     |
| Обоснованно получен ответ, отличающийся от верного                                      | 1     |
| исключением точек $\log_2 \frac{\sqrt{21}-3}{6}$ и/или $\log_2 \frac{\sqrt{17}-1}{2}$ . |       |
| ИЛИ                                                                                     |       |
| Получен неверный ответ из-за вычислительной ошибки, но при этом                         |       |
| имеется верная последовательность всех шагов решения                                    |       |

| Решение не соответствует ни одному из критериев, перечисленных | 0 |
|----------------------------------------------------------------|---|
| выше                                                           |   |
| Максимальный балл                                              | 2 |

15 января планируется взять кредит в банке на 9 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного его погашения равнялась 2,3 млн рублей?

## Решение.

Пусть сумма кредита равна S. По условию долг перед банком (в млн руб.) по состоянию на 15-е число должен уменьшаться до нуля равномерно:

$$S, \frac{8S}{9}, ..., \frac{2S}{9}, \frac{S}{9}, 0.$$

Первого числа каждого месяца долг возрастает на 3 %, значит, последовательность размеров долга (в млн руб.) по состоянию на 1-е число такова:

$$1,03S, 1,03 \cdot \frac{8S}{9}, \dots, 1,03 \cdot \frac{2S}{9}, 1,03 \cdot \frac{S}{9}$$

Следовательно, выплаты (в млн руб.) должны быть следующими: 
$$0,03S+\frac{S}{9},\,\frac{8\cdot 0,03S+S}{9},\,\ldots,\,\frac{2\cdot 0,03S+S}{9},\,\frac{0,03S+S}{9}.$$

Всего следует выплатить

$$S + S \cdot 0.03 \left( 1 + \frac{8}{9} + \dots + \frac{2}{9} + \frac{1}{9} \right) = S \left( 1 + \frac{10 \cdot 0.03}{2} \right) = 1.15S, \ 1.15S = 2.3, \ S = 2.$$

Значит, сумма, взятая в кредит, равна 2 млн рублей.

Ответ: 2 млн рублей.

| Содержание критерия                                            | Баллы |
|----------------------------------------------------------------|-------|
| Обоснованно получен верный ответ                               | 2     |
| Верно построена математическая модель                          | 1     |
| Решение не соответствует ни одному из критериев, перечисленных | 0     |
| выше                                                           |       |
| Максимальный балл                                              | 2     |

Две окружности разных радиусов касаются внешним образом в точке C. Вершины A и B равнобедренного прямоугольного треугольника ABCс прямым углом C лежат на меньшей и большей окружностях соответственно. Прямая АС вторично пересекает большую окружность в точке E, а прямая BC вторично пересекает меньшую окружность в точке D.

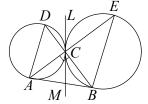
а) Докажите, что прямые AD и BE параллельны.

б) Найдите BC, если радиусы окружностей равны 2 и  $\sqrt{5}$ .

#### Решение.

5

а) Пусть *LM* — общая касательная двух окружностей, причём точки L и В лежат по разные стороны от прямой AC, а точки Lи M лежат по разные стороны от точки C. Тогда по теореме об угле между касательной и хордой



$$\angle CAD = \angle DCL = \angle MCB = \angle CEB$$
.

Значит, прямые AD и BE параллельны, поскольку накрест лежащие углы *CAD* и *CEB* при пересечении этих прямых прямой *AE* равны.

б) Поскольку угол ACB прямой, AD и BE — диаметры меньшей и большей окружностей соответственно.

Поскольку  $\angle CAD = \angle CEB$ , прямоугольные треугольники ACD и ECBподобны по острому углу с коэффициентом подобия  $\frac{AD}{BE} = \frac{2}{\sqrt{5}}$ .

Пусть 
$$BC = AC = x$$
, тогда  $CD = \frac{2}{\sqrt{5}} \cdot BC = \frac{x \cdot 2\sqrt{5}}{5}$ .

В прямоугольном треугольнике ACD:

$$AD^2 = AC^2 + CD^2$$
;  $16 = x^2 + \frac{4x^2}{5}$ ,

откуда 
$$x = \frac{4\sqrt{5}}{3}$$
.

**Ответ:** б) 
$$\frac{4\sqrt{5}}{3}$$

| Содержание критерия                                                   | Баллы |
|-----------------------------------------------------------------------|-------|
| Имеется верное доказательство утверждения пункта а, и                 | 3     |
| обоснованно получен верный ответ в пункте $\delta$                    |       |
| Получен обоснованный ответ в пункте $\delta$ .                        | 2     |
| ИЛИ                                                                   |       |
| Имеется верное доказательство утверждения пункта а, и при             |       |
| обоснованном решении пункта $\delta$ получен неверный ответ из-за     |       |
| арифметической ошибки                                                 |       |
| Имеется верное доказательство утверждения пункта а.                   | 1     |
| ИЛИ                                                                   |       |
| При обоснованном решении пункта $\delta$ получен неверный ответ из-за |       |
| арифметической ошибки.                                                |       |
| ИЛИ                                                                   |       |
| Обоснованно получен верный ответ в пункте $\delta$ с использованием   |       |
| утверждения пункта $a$ , при этом пункт $a$ не выполнен               |       |
| Решение не соответствует ни одному из критериев, приведённых          | 0     |
| выше                                                                  |       |
| Максимальный балл                                                     | 3     |

Найдите все значения a, при каждом из которых уравнение

$$\frac{x-2a}{x+1} + \frac{x-2}{x-a} = 1$$

имеет ровно один корень.

### Решение.

18

Преобразуем исходное уравнение:

$$\frac{(x-2a)(x-a)+(x-2)(x+1)-(x+1)(x-a)}{(x+1)(x-a)}=0;$$

$$\frac{x^2-(2a+2)x+(2a^2+a-2)}{(x+1)(x-a)}=0.$$

Корнями этого уравнения являются корни уравнения

$$x^{2}-(2a+2)x+(2a^{2}+a-2)=0$$

не равные a и -1.

Если x = -1 является корнем уравнения

$$x^{2}-(2a+2)x+(2a^{2}+a-2)=0$$

то  $1+(2a+2)+(2a^2+a-2)=0$ ;  $2a^2+3a+1=0$ , откуда a=-1 или a=-0.5.

Если x = a является корнем уравнения

$$x^{2}-(2a+2)x+(2a^{2}+a-2)=0$$

© СтатГрад 2023-2024 уч. г.

то  $a^2 - (2a+2)a + (2a^2 + a - 2) = 0$ ;  $a^2 - a - 2 = 0$ , откуда a = -1 или a = 2.

Решим уравнение при при полученных значениях а:

- при a = -1 исходное уравнение имеет единственный корень x = 1;
- при a = -0.5 исходное уравнение имеет единственный корень x = 2;
- при a = 2 исходное уравнение имеет единственный корень x = 4. Дискриминант квадратного уравнения

$$x^{2}-(2a+2)x+(2a^{2}+a-2)=0$$

равен

7

$$4a^{2} + 8a + 4 - 8a^{2} - 4a + 8 = 12 + 4a - 4a^{2} = -4\left(a - \frac{1 + \sqrt{13}}{2}\right)\left(a - \frac{1 - \sqrt{13}}{2}\right)$$

Значит, уравнение  $x^2 - (2a+2)x + (2a^2 + a - 2) = 0$ :

- имеет ровно два различных корня при  $\frac{1-\sqrt{13}}{2} < a < \frac{1+\sqrt{13}}{2}$ ;
- имеет ровно один корень при  $a = \frac{1 \sqrt{13}}{2}$  или  $a = \frac{1 + \sqrt{13}}{2}$ ;
- не имеет корней при  $a < \frac{1 \sqrt{13}}{2}$  или  $a > \frac{1 + \sqrt{13}}{2}$ .

Таким образом, исходное уравнение имеет ровно один корень при

$$a = \frac{1 - \sqrt{13}}{2}$$
;  $a = -1$ ;  $a = -0.5$ ;  $a = 2$ ;  $a = \frac{1 + \sqrt{13}}{2}$ .

**Other:** 
$$a = \frac{1 - \sqrt{13}}{2}$$
;  $a = -1$ ;  $a = -0.5$ ;  $a = 2$ ;  $a = \frac{1 + \sqrt{13}}{2}$ .

| Содержание критерия                                                       | Баллы |
|---------------------------------------------------------------------------|-------|
| Обоснованно получен верный ответ                                          | 4     |
| С помощью верного рассуждения найдены точки $a = -1$ , $a = -0.5$         | 3     |
| и $a = 2$ множества значений $a$                                          | 3     |
| С помощью верного рассуждения найдены точки $a = \frac{1 - \sqrt{13}}{2}$ |       |
| и $a = \frac{1+\sqrt{13}}{2}$ множества значений $a$ .                    | 2     |
| ИЛИ                                                                       |       |
| Обоснованно получена хотя бы одна из точек множества значений а:          |       |
| a = -1, $a = -0.5$ и $a = 2$                                              |       |
| Задача верно сведена к исследованию корней уравнения                      |       |
| $x^{2}-(2a+2)x+(2a^{2}+a-2)=0$ .                                          |       |
| ИЛИ                                                                       | 1     |
| Получен неверный ответ из-за вычислительной ошибки, но при этом           |       |
| верно выполнены все шаги решения                                          |       |

| Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
|---------------------------------------------------------------------|---|
| Максимальный балл                                                   | 4 |

19

На окружности некоторым образом расставили натуральные числа от 4 до 27 (каждое число поставлено по одному разу). Затем для каждой пары соседних чисел нашли разность большего и меньшего.

- а) Могли ли все полученные разности быть не меньше 12?
- б) Могли ли все полученные разности быть не меньше 11?
- в) Помимо полученных разностей соседних чисел, для каждой пары чисел, стоящих через одно, нашли разность большего и меньшего. Для какого наибольшего целого числа k можно так расставить числа, чтобы все разности (соседних чисел и чисел, стоящих через одно) были не меньше k?

## Решение.

- а) При любой расстановке разность числа 16 и одного из соседних с ним чисел меньше 12. Значит, всегда найдётся хотя бы одна разность меньше 12.
- б) Например, для расстановки 4, 16, 5, 17, 6, 18, 7, 19,  $\bar{8}$ , 20, 9, 21, 10, 22, 11, 23, 12, 24, 13, 25, 14, 26, 15, 27 все разности не меньше 11.
- в) Оценим значение k. Рассмотрим числа от 4 до 11. Если какие-то два из них стоят рядом или через одно, то найдётся разность меньше 8. Иначе они стоят через два, поскольку всего чисел 24. В этом случае число 12 стоит рядом или через одно с каким-то числом от 5 до 11 и найдётся разность меньше 8.

Таким образом, всегда найдётся разность меньше 8. Все разности могут быть не меньше 7. Например, для расстановки 4, 12, 20, 5, 13, 21, 6, 14, 22, 7, 15, 23, 8, 16, 24, 9, 17, 25, 10, 18, 26, 11, 19, 27 все разности не меньше 7.

Ответ: а) нет; б) да; в) 7.

| Содержание критерия                                                      | Баллы |
|--------------------------------------------------------------------------|-------|
| Обоснованно получены верные ответы в пунктах $a$ , $\delta$ и $\epsilon$ | 4     |
| Обоснованно получен верный ответ в пункте $e$ , и обоснованно            | 3     |
| получен верный ответ в пункте $a$ или $\delta$                           |       |
| Обоснованно получены верные ответы в пунктах а и б.                      | 2     |
| ИЛИ                                                                      |       |
| Обоснованно получен верный ответ в пункте $\theta$                       |       |
| Обоснованно получен верный ответ в пункте $a$ или $\delta$               | 1     |
| Решение не соответствует ни одному из критериев, перечисленных           | 0     |
| выше                                                                     |       |
| Максимальный балл                                                        | 4     |