Тренировочная работа №2 по МАТЕМАТИКЕ 11 класс

16 декабря 2020 года Вариант МА2010209 (профильный уровень)

Выполнена: ФИО	класс	
----------------	-------	--

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

© СтатГрад 2020-2021 уч. г.

Математика. 11 класс. Вариант МА2010209

Часть 1

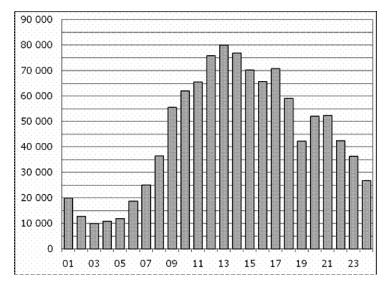
2

Ответом к каждому из заданий 1—12 является целое число или конечная десятичная дробь. Запишите ответы к заданиям в поле ответа в тексте работы.

1 Задачу № 1 правильно решили 27 950 человек, что составляет 86 % от выпускников города. Сколько всего выпускников в этом городе?

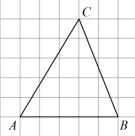
Ответ: ______.

2 На диаграмме показано количество посетителей сайта РИА Новости в течение каждого часа 8 декабря 2009 года. По горизонтали указывается час, по вертикали — количество посетителей сайта на протяжении этого часа. Определите по диаграмме, в течение какого часа на сайте побывало минимальное количество посетителей.



Ответ: .

3 На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его средней линии, параллельной стороне AB.



3

4 За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.

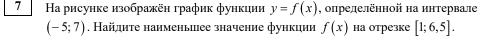
Ответ: ______.

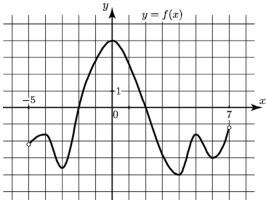
5 Найдите корень уравнения $(x-2)^3 = -216$.

Ответ: .

В треугольнике ABC угол C равен 90° , AC = 12, BC = 5. Найдите радиус вписанной окружности.

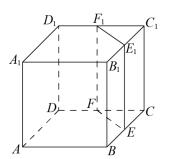
Ответ: .





Ответ: ______.

8 Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 4. Найдите объём куба.



Ответ:

Часть 2

9 Найдите $46\cos 2\alpha$, если $\cos \alpha = 0,1$.

Ответ: .

10 Независимое агентство намерено ввести рейтинг новостных интернетизданий на основе показателей информативности In, оперативности Op, объективности Tr публикаций, а также качества Q сайта. Каждый отдельный показатель — целое число от -2 до 2.

Составители рейтинга считают, что объективность ценится втрое, а информативность публикаций — вчетверо дороже, чем оперативность публикаций и качество сайта. Таким образом, формула приняла вид

$$R = \frac{4In + Op + 3Tr + Q}{A}.$$

Найдите, каким должно быть число A, чтобы издание, у которого все показатели максимальны, получило рейтинг 1.

Ответ: ______.

Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть — со скоростью 120 км/ч, а последнюю — со скоростью 40 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Ответ: ______.

12 Найдите точку минимума функции $y = 8^{x^2 + 4x + 20}$.

Ответ: . .

Для записи решений и ответов на задания 13—19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $\cos^2\left(\frac{2\pi}{3} x\right) = \cos^2\left(\frac{2\pi}{3} + x\right)$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$.

- $ABCA_1B_1C_1$ правильная призма, сторона AB равна 16. Через точки M и P, лежащие на рёбрах AC и BB_1 соответственно, проведена плоскость α , параллельная прямой AB. Сечение призмы этой плоскостью четырёхугольник, одна сторона которого равна 16, а три другие равны между собой.
 - а) Докажите что периметр сечения призмы плоскостью а больше 40.
 - б) Найдите расстояние от точки A до плоскости α , если упомянутый периметр равен 46.
- 15 Решите неравенство $\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} > 1$.
- В треугольнике ABC биссектрисы AK и BL пересекаются в точке I. Известно, что около четырёхугольника CKIL можно описать окружность.
 - а) Докажите, что угол BCA равен 60° .
 - б) Найдите площадь треугольника ABC, если его периметр равен 25 и IC = 4.
- Евгений хочет купить пакет акций быстрорастущей компании. В начале года у Евгения было недостаточно денег, а пакет стоил 195 000 рублей. В середине каждого месяца Евгений откладывает на покупку пакета акций одну и ту же сумму, а в конце месяца пакет дорожает, но не более чем на 40 %. Какую наименьшую сумму нужно откладывать Евгению каждый месяц, чтобы через некоторое время купить желаемый пакет акций?
- **18** Найдите все значения a, при которых уравнение $\sqrt{x+a} \sqrt{x-a} = a$

имеет единственное решение.

- 19 Пусть \overline{ab} обозначает двузначное число, равное 10a + b, где a и b десятичные цифры, $a \neq 0$.
 - а) Существуют ли такие попарно различные ненулевые десятичные цифры a, b, c и d, что $\overline{ab} \cdot \overline{cd} \overline{ba} \cdot \overline{dc} = 198$?
 - б) Существуют ли такие попарно различные ненулевые десятичные цифры a, b, c и d, что $\overline{ab}\cdot\overline{cd}-\overline{ba}\cdot\overline{dc}=495$, если среди цифр a, b, c и d есть цифра 5?
 - в) Какое наибольшее значение может принимать выражение $\overline{ab} \cdot \overline{cd} \overline{ba} \cdot \overline{dc}$, если среди цифр a, b, c и d есть цифры 5 и 6?

math100.ru
Ответы на тренировочные варианты 2010209-2010212 (профильный уровень) от 16.12.2020

	1	2	3	4	5	6	7	8	9	10	11	12
2010209	32500	3	2,5	0,25	- 4	2	- 4	32	- 45,08	18	60	- 2
2010210	31000	13	3	0,75	- 5	4	- 3	72	- 3,08	32	54	4
2010211	340,8	9	5	0,039	6,5	2,4	- 0,5	300	- 4	60	9	- 38
2010212	369,6	6	3	0,0294	0,2	1,5	- 0,25	560	- 3	60	8	- 3

Критерии оценивания заданий с развёрнутым ответом

13

a) Решите уравнение $\cos^2\left(\frac{2\pi}{3} - x\right) = \cos^2\left(\frac{2\pi}{3} + x\right)$.

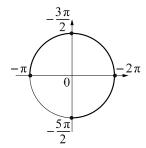
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$.

Решение.

а) Запишем исходное уравнение в виде

$$\left(\cos\left(\frac{2\pi}{3}-x\right)-\cos\left(\frac{2\pi}{3}+x\right)\right)\left(\cos\left(\frac{2\pi}{3}-x\right)+\cos\left(\frac{2\pi}{3}+x\right)\right)=0\;;\qquad \sin x\cos x=0\;,$$
 а значит, $\sin 2x=0$, следовательно, $x=\frac{\pi n}{2},\ n\in\square$.

б) Корни, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$, отберём с помощью единичной окружности.



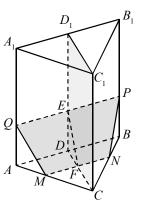
Получаем $-\frac{5\pi}{2}; -2\pi; -\frac{3\pi}{2}; -\pi$.

Other: a) $\frac{\pi n}{2}$, $n \in \Box$; 6) $-\frac{5\pi}{2}$; -2π ; $-\frac{3\pi}{2}$; $-\pi$.

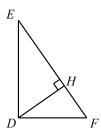
Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- $ABCA_1B_1C_1$ правильная призма, сторона AB равна 16. Через точки M и P, лежащие на рёбрах AC и BB_1 соответственно, проведена плоскость α , параллельная прямой AB. Сечение призмы этой плоскостью четырёхугольник, одна сторона которого равна 16, а три другие равны между собой.
 - а) Докажите что периметр сечения призмы плоскостью α больше 40.
 - б) Найдите расстояние от точки A до плоскости α , если упомянутый периметр равен 46.

Решение.



- а) Отметим на рёбрах BC и AA_1 точки N и Q соответственно так, что прямые MN, PQ и AB параллельны. Тогда трапеция PQMN искомое сечение. В ней PQ=16, и пусть QM=MN=NP=x. Треугольник CMN равносторонний, значит, MC=x и AM=16-x. В прямоугольном треугольнике QAM катет AM=16-x короче гипотенузы QM=x, поэтому x>16-x, то есть x>8. Тогда можем оценить периметр сечения: PQ+QM+MN+NP=16+3x>40.
- б) В данном случае 16+3x=46, то есть x=10. Тогда QM=MC=10, AM=16-10=6 и $AQ=\sqrt{QM^2-AM^2}=8$. Поскольку плоскость α параллельна прямой AB, расстояние от любой точки прямой AB до α одно и то же, так что найдём расстояние от D до α , где D— середина AB. Пусть точка D_1 середина A_1B_1 , тогда плоскость CDD_1 перпендикулярна α .



Искомое расстояние — высота DH прямоугольного треугольника EFD, где E — точка пересечения прямых DD_1 и PQ, F — точка пересечения прямых DC и MN. В треугольнике EFD сторона DE равна 8,

$$DF = \frac{6}{16}DC = \frac{3}{8} \cdot \frac{16\sqrt{3}}{2} = 3\sqrt{3}$$
, $EF = \sqrt{ED^2 + DF^2} = \sqrt{91}$ и

$$DH = \frac{DE \cdot DF}{EF} = \frac{24\sqrt{273}}{91}.$$

Ответ: б) $\frac{24\sqrt{273}}{3}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а и	2
обоснованно получен верный ответ в пункте δ	
Имеется верное доказательство утверждения пункта а	1
ИЛИ	
обоснованно получен верный ответ в пункте δ , возможно,	
с использованием утверждения пункта a , при этом пункт a	
не выполнен	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	2

Решите неравенство $\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} > 1$.

Решение.

Запишем исходное неравенство в виде

$$\frac{x^3 - 13x^2 + 50x - 56}{(x+2)(x+4)(x+7)} - 1 > 0; \quad \frac{x^3 - 13x^2 + 50x - 56 - \left(x^3 + 13x^2 + 50x + 56\right)}{(x+2)(x+4)(x+7)} > 0;$$

$$\frac{-26x^2 - 112}{(x+2)(x+4)(x+7)} > 0; \quad \frac{13x^2 + 56}{(x+2)(x+4)(x+7)} < 0, \text{ следовательно, } x < -7 \text{ или}$$

$$-4 < x < -2.$$

© СтатГрад 2020-2021 уч. г.

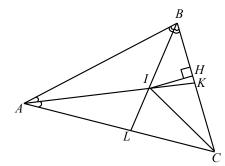
Ответ: $(-\infty, -7)$; (-4, -2).

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Получен неверный ответ из-за вычислительной ошибки, но при этом	1
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

В треугольнике ABC биссектрисы AK и BL пересекаются в точке I. Известно, что около четырёхугольника *СКІ*L можно описать окружность.

- а) Докажите, что угол BCA равен 60° .
- б) Найдите площадь треугольника АВС, если его периметр равен 25 и IC = 4.

Решение.



а) Обозначим через α и β углы CAB и ABC соответственно. Тогда углы IAB и ABI равны $\frac{\alpha}{2}$ и $\frac{\beta}{2}$ соответственно. По теореме о сумме углов треугольника получаем, что угол \emph{BIA} равен $180^{\circ} - \frac{\alpha}{2} - \frac{\beta}{2}$. Такая же величина

у вертикального к нему угла *LIK*.

По условию около четырёхугольника CKIL можно описать окружность. Следовательно, угол BCA дополняет угол LIK до 180° . С другой стороны, по теореме о сумме углов треугольника угол BCA дополняет до 180° сумму углов α и β . Следовательно, $180^{\circ} - \frac{\alpha}{2} - \frac{\beta}{2} = \alpha + \beta$ и $\alpha + \beta = 120^{\circ}$. Значит, угол BCA равен 60° .

б) Поскольку точка I является точкой пересечения биссектрис AK и BL, она также лежит на биссектрисе угла ВСА и является центром вписанной

© СтатГрад 2020-2021 уч. г.

в треугольник ABC окружности. Значит, радиус этой окружности равен длине перпендикуляра IH, опущенного из этой точки на BC.

По доказанному угол HCI равен половине угла BCA, то есть он равен 30° . В прямоугольном треугольнике HCI против угла в 30° лежит катет IH. Следовательно, $IH = \frac{1}{2} \cdot IC = 2$.

Площадь треугольника ABC равна половине произведения его периметра на радиус вписанной окружности. Значит, эта площадь равна $\frac{1}{2} \cdot 25 \cdot 2 = 25$.

Ответ: б) 25.

Olber: 0) 25.	
Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	1
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	İ
Имеется верное доказательство утверждения пункта а, и при	1
обоснованном решении пункта δ получен неверный ответ из-за	1
арифметической ошибки	i
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	i
При обоснованном решении пункта δ получен неверный ответ из-за	i
арифметической ошибки.	i
ИЛИ	i
Обоснованно получен верный ответ в пункте δ с использованием	i
утверждения пункта a , при этом пункт a не выполнен	İ
Решение не соответствует ни одному из критериев, перечисленных	0
выше	i
Максимальный балл	3

17

Евгений хочет купить пакет акций компании. 15 февраля он отложил определённую сумму денег и планирует откладывать такую же сумму денег 15 числа каждого месяца. Первого февраля пакет акций стоил 195 000 рублей. Первого числа каждого месяца пакет акций дорожает на 40 %. Какую наименьшую сумму нужно Евгению откладывать каждый месяц, чтобы через некоторое время купить желаемый пакет акций?

Решение.

Пусть Евгений откладывает в середине каждого месяца x рублей. К середине n-го месяца у Евгения скопится nx рублей, а акции будут стоить не более $195\,000\cdot 1,4^{n-1}$ рублей. Для того чтобы Евгений смог купить пакет акций в этом месяце, необходимо, чтобы выполнялось неравенство

 $x \geq \frac{195\ 000\cdot 1,4^{n-1}}{n}$. Положим $a_n = \frac{195\ 000\cdot 1,4^{n-1}}{n}$. Для того чтобы Евгений смог через некоторое время купить пакет акций, необходимо и достаточно откладывать сумму, большую либо равную наименьшему из чисел a_n . Сравним два последовательных таких числа. Для этого вычислим их отношение: $\frac{a_{n+1}}{a_n} = \frac{1,4\cdot n}{n+1} = \frac{7n}{5n+5}$. Отсюда получаем, что при n < 3 выполнено неравенство $a_{n+1} < a_n$, а при $n \geq 3$ выполнено неравенство $a_{n+1} \geq a_n$. Значит, наименьшим из чисел a_n будет число

$$a_3 = \frac{195\,000 \cdot 1,4^2}{3} = 127\,400$$
.

Поэтому наименьшая сумма, которую нужно откладывать Евгению, равна 127 400 рублям.

Ответ: 127 400 рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели и получен результат:	
— неверный ответ из-за вычислительной ошибки;	
— верный ответ, но решение недостаточно обосновано	
Верно построена математическая модель, решение сведено	1
к исследованию этой модели, при этом решение может быть	
не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

Найдите все значения a, при которых уравнение $\sqrt{x+a} - \sqrt{x-a} = a$

имеет единственное решение.

Решение.

При a=0 уравнение $\sqrt{x+a}-\sqrt{x-a}=a$ принимает вид $\sqrt{x}-\sqrt{x}=0$ и имеет бесконечно много решений.

При $a \neq 0$ выражения $\sqrt{x+a} + \sqrt{x-a}$ и $\sqrt{x+a} - \sqrt{x-a}$ имеют смысл при $x \geq |a|$. При таких значениях a и x имеем $\sqrt{x+a} + \sqrt{x-a} > 0$. Значит, в этом случае уравнение $\sqrt{x+a} - \sqrt{x-a} = a$ равносильно уравнениям

$$\left(\sqrt{x+a} - \sqrt{x-a}\right)\left(\sqrt{x+a} + \sqrt{x-a}\right) = a\left(\sqrt{x+a} + \sqrt{x-a}\right),$$
$$\left(x+a\right) - \left(x-a\right) = a\left(\sqrt{x+a} + \sqrt{x-a}\right) \text{ if } \sqrt{x+a} + \sqrt{x-a} = 2.$$

Пусть $a \neq 0$ и $f(x) = \sqrt{x+a} + \sqrt{x-a}$. Тогда функция y = f(x) определена при $x \in [|a|; +\infty)$, непрерывна и строго возрастает на своей области определения. Следовательно, область значений функции f(x) равна $\left[\sqrt{2|a|}; +\infty\right)$, причём каждое своё значение функция f(x) принимает по одному разу. Значит, уравнение $\sqrt{x+a} + \sqrt{x-a} = 2$ и равносильное ему исходное уравнение $\sqrt{x+a} - \sqrt{x-a} = a$ имеют единственное решение при $\sqrt{2|a|} \leq 2$, то есть при $-2 \leq a < 0$ и $0 < a \leq 2$.

Ответ: [-2;0); (0;2].

[
Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений а,	3
отличающееся от искомого только исключением точек -2 и / или 2	
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением точки 0 ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом	2
верно выполнены все шаги решения	
Задача верно сведена к исследованию возможного количества корней уравнения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

19

Пусть \overline{ab} обозначает двузначное число, равное 10a+b, где a и b — цифры, $a \neq 0$.

- а) Существуют ли такие попарно различные ненулевые цифры a, b, c и d, что $\overline{ab} \cdot \overline{cd} \overline{ba} \cdot \overline{dc} = 198$?
- б) Существуют ли такие попарно различные ненулевые цифры a, b, c и d, что $\overline{ab}\cdot\overline{cd}-\overline{ba}\cdot\overline{dc}=495$, если среди цифр a, b, c и d есть цифра 5?
- в) Какое наибольшее значение может принимать выражение $\overline{ab}\cdot \overline{cd} \overline{ba}\cdot \overline{dc}$, если среди цифр a, b, c и d есть цифры 5 и 6?

Решение.

а) Да.

Действительно, поскольку

© СтатГрад 2020-2021 уч. г.

$$\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = (10a + b) \cdot (10c + d) - (10b + a) \cdot (10d + c) = 99 \cdot (ac - bd),$$

нужно подобрать такие попарно различные ненулевые цифры a, b, c и d, что ac-bd=2. Это верно, например, при a=1, b=2, c=8 и d=3.

б) Докажем, что это невозможно. Имеем $\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = 99 \cdot (ac - bd)$.

Значит, если
$$\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = 495$$
, то $99 \cdot (ac - bd) = 495 = 99 \cdot 5$ и $ac - bd = 5$.

Если среди цифр a, b, c и d есть цифра 5, то одно из произведений ac или bd делится на 5, а значит, и другое произведение тоже делится на 5. Это невозможно, так как в этом случае среди цифр a, b, c и d есть по крайней мере две цифры 5.

в) Как показано выше, имеем $\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = 99 \cdot (ac - bd)$. Рассмотрим все возможные случаи, когда среди цифр a, b, c и d есть цифры 5 и 6.

Если цифры 5 и 6 — это a и c, то $ac-bd \le 5 \cdot 6 - 1 \cdot 2 = 28$.

Если цифры 5 и 6 — это b и d, то $ac - bd \le 8 \cdot 9 - 5 \cdot 6 = 42$.

Если цифра 5 — это a или c, а цифра 6 — это b или d, то $ac-bd \le 5 \cdot 9 - 6 \cdot 1 = 39$.

Если цифра 6 — это a или c , а цифра 5 — это b или d , то $ac-bd \le 6 \cdot 9 - 5 \cdot 1 = 49$.

Значит, наибольшее возможное значение выражения $\overline{ab \cdot cd} - \overline{ba} \cdot \overline{dc}$ равно $99 \cdot 49 = 4851$, оно достигается при a = 6, b = 5, c = 9 и d = 1.

Ответ: а) Да; б) нет; в) $99 \cdot 49 = 4851$.

O'161. a) Aa, b) He1, b) 77. 77 - 7031.	
Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	1
 обоснованное решение пункта a; 	
$-$ обоснованное решение пункта δ ;	
искомая оценка в пункте в;	
– пример в пункте в, обеспечивающий точность предыдущей оценки	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4