Тренировочная работа №1 по МАТЕМАТИКЕ 10 класс

28 января 2021 года Вариант MA2000310 (профильный уровень)

Выполнена: ФИО	класс

Инструкция по выполнению работы

На выполнение тренировочной работы по математике даётся 235 минут. Работа включает в себя 19 заданий и состоит из двух частей.

Ответом в заданиях части 1 (1-12) является целое число или десятичная дробь. Запишите ответ в отведённом для него месте на листе с заданиями.

В заданиях части 2 (13–19) требуется записать полное решение на отдельном чистом листе.

При выполнении работы нельзя пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Выполнять задания можно в любом порядке, главное — правильно решить как можно больше заданий. Советуем Вам для экономии времени пропускать задание, которое не удаётся выполнить сразу, и переходить к следующему. Если после выполнения всей работы у Вас останется время, можно будет вернуться к пропущенным заданиям.

Желаем успеха!

Математика. 10 класс. Вариант МА2000310

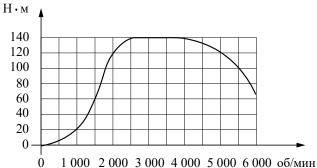
Часть 1

В заданиях 1–12 дайте ответ в виде целого числа, или десятичной дроби, или последовательности цифр.

1	Рост человека 5 футов 11 дюймов. Выразите его рост в сантиметрах, если 1
<u></u>	фут равен 12 дюймам. Считайте, что 1 дюйм равен 2,54 см. Результат
	округлите до целого числа сантиметров.

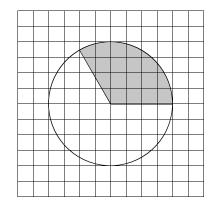
Ответ:

На графике изображена зависимость крутящего момента двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту, на оси ординат — крутящий момент в H⋅м. Чему равен крутящий момент (в H⋅м), если двигатель делает 5500 оборотов в минуту?



Ответ: .

На клетчатой бумаге изображён круг площадью 30. Найдите площадь заштрихованного сектора.



2

Ответ:

© СтатГрад 2020-2021 уч. г.

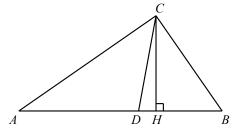
4 Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 5, но не дойдя до отметки 8.

Ответ: .

5 Найдите корень уравнения $(x-13)^2 = -52x$.

Ответ: ______.

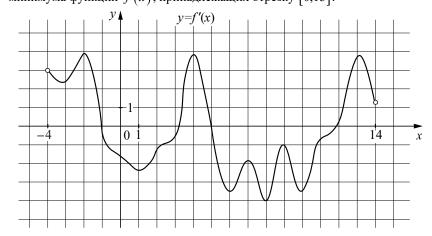
6 Один из углов прямоугольного треугольника равен 53°. Найдите угол между высотой и биссектрисой, проведёнными из вершины прямого угла. Ответ дайте в градусах.



3

Ответ: .

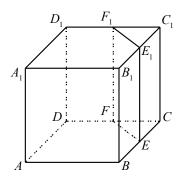
Т На рисунке изображён график функции y = f'(x) — производной функции f(x), определённой на интервале (-4;14). Найдите количество точек минимума функции f(x), принадлежащих отрезку [0;13].



Ответ: _____

© СтатГрад 2020-2021 уч. г.

8 Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 14. A_1 Найдите объём куба.



Ответ: _____

 $oxed{9}$ Найдите значение выражения $\left(\sqrt{3\frac{6}{7}}-\sqrt{1\frac{5}{7}}\right):\sqrt{\frac{3}{28}}$.

Ответ: _____

10 К источнику с ЭДС ε = 105 В и внутренним сопротивлением r = 0,9 Ом хотят подключить нагрузку с сопротивлением R Ом. Напряжение на этой нагрузке, выражаемое в вольтах, задаётся формулой $U = \frac{\varepsilon R}{R+r}$. При каком наименьшем значении сопротивления нагрузки напряжение на ней будет не менее 100 В? Ответ выразите в омах.

Ответ: .

Первый и второй насосы наполняют бассейн за 40 минут, второй и третий — за 45 минут, а первый и третий — за 2 часа. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Ответ: .

12 Найдите наименьшее значение функции $y = (x+6)^2(x+3)-3$ на отрезке [-6;1].

Ответ: ______.

Часть 2

5

В заданиях 13-19 запишите полное решение на отдельном чистом листе.

- 13 а) Решите уравнение $\cos^2 \frac{x}{4} \sin^2 \frac{x}{4} = \sin \left(\frac{5\pi}{2} + x \right)$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $[5\pi; 8\pi]$.
- В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра: AB = 8, AD = 15, $AA_1 = 12$.
 - а) Докажите, что плоскость DBB_1 образует равные углы с плоскостями CD_1B_1 и AD_1B_1 .
 - б) Найдите угол между плоскостями CD_1B_1 и AD_1B_1 .
- Решите неравенство $\frac{\sqrt{12+x-x^2}}{2x+7} \ge \frac{\sqrt{12+x-x^2}}{x+5}$
- Окружность, вписанная в треугольник ABC, касается его сторон AB и BC в точках E и F соответственно. Известно, что точки A, E, F и C лежат на одной окружности.
 - а) Докажите, что треугольник АВС равнобедренный.
 - б) Найдите радиус окружности, на которой лежат точки A , E , F и C , если AC = 2 и BC = 5 .
- 17 15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
 - 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что на восьмой месяц кредитования выплата составит 33 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?

18 Найдите все значения a, при которых уравнение

$$4(x^2 + ax) + \frac{1}{x^2 + ax} = 4$$

имеет единственное решение на отрезке [-1;1].

- 19 Пусть S(n) и K(n) обозначают сумму всех цифр и сумму квадратов всех цифр натурального числа n соответственно.
 - а) Существует ли такое натуральное число n, что K(n) = 2S(n) + 3?
 - б) Существует ли такое натуральное число n, что K(n) = 3S(n) + 3?
 - в) Для какого наименьшего натурального числа n выполнено равенство K(n) = 8S(n) + 56?

math100.ru
Ответы на тренировочные варианты 2000309-2000310 (профильный уровень) от 28.01.2021

	1	2	3	4	5	6	7	8	9	10	11	12
2000309	196	120	30	0,5	- 14	20	3	200	- 9	18	20	10
2000310	180	100	10	0,25	- 13	8	2	112	2	18	36	- 7

Критерии оценивания заданий с развёрнутым ответом

13

- a) Решите уравнение $\cos^2 \frac{x}{4} \sin^2 \frac{x}{4} = \sin \left(\frac{5\pi}{2} + x \right)$.
- б) Укажите корни этого уравнения, принадлежащие отрезку $[5\pi; 8\pi]$.

Решение.

а) Преобразуем уравнение:

$$\cos x - \cos \frac{x}{2} = 0$$
; $2\cos^2 \frac{x}{2} - \cos \frac{x}{2} - 1 = 0$.

Значит, $\cos\frac{x}{2}=1$ или $\cos\frac{x}{2}=-\frac{1}{2}$, следовательно, $x=4\pi n$ или $x=\pm\frac{4\pi}{3}+4\pi k$, где $n,k\in\square$.

б) Отберём корни, принадлежащие отрезку $[5\pi; 8\pi]$:

$$5\pi \le 4\pi n \le 8\pi$$
; $1,25 \le n \le 2$; $n = 2$; $x = 8\pi$;

$$5\pi \le \frac{4\pi}{3} + 4\pi k \le 8\pi$$
; $\frac{11}{12} \le k \le \frac{5}{3}$; $k = 1$; $x = \frac{16\pi}{3}$;

$$5\pi \le -\frac{4\pi}{3} + 4\pi k \le 8\pi$$
; $\frac{19}{12} \le k \le \frac{7}{3}$; $k = 2$; $x = \frac{20\pi}{3}$.

Получим числа $\frac{16\pi}{3}$; $\frac{20\pi}{3}$; 8π .

Ответ: a) $4\pi n$, $\pm \frac{4\pi}{3} + 4\pi k$, где $n, k \in \square$; б) $\frac{16\pi}{3}$; $\frac{20\pi}{3}$; 8π .

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра: AB = 8, AD = 15, $AA_1 = 12$.

а) Докажите, что плоскость DBB_1 образует равные углы с плоскостями CD_1B_1 и AD_1B_1 .

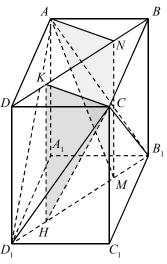
б) Найдите угол между плоскостями CD_1B_1 и AD_1B_1 .

Решение.

а) В треугольниках CD_1B_1 и AD_1B_1 проведём высоты CH и AM.

Через точки H и M проведём отрезки HK и MN, перпендикулярные плоскостям оснований параллелепипеда. Поскольку наклонные CH и AM перпендикулярны прямой DB, их проекции KC и AN тоже перпендикулярны прямой DB, а следовательно, KC и AN равны между собой.

Прямоугольные треугольники HCK и MAN равны по двум катетам, поэтому $\angle KHC = \angle NMA$, т. е. плоскость DBB_1 образует равные углы с плоскостями CD_1B_1 и AD_1B_1 .



б) Угол между плоскостями $CD_{1}B_{1}$ и $AD_{1}B_{1}$ равен сумме углов, которые плоскость DBB_{1} образует с плоскостями $CD_{1}B_{1}$ и $AD_{1}B_{1}$.

Из треугольника DCB находим, что BD = 17; $CK = \frac{DC \cdot CB}{DB}$; $CK = \frac{15 \cdot 8}{17} = \frac{120}{17}$.

Из треугольника KHC находим, что $tg\angle KHC = \frac{CK}{KH}$; $tg\angle KHC = \frac{120}{17 \cdot 12} = \frac{10}{17}$; $\angle KHC = \arctan \frac{10}{17}$.

Поэтому угол между плоскостями CD_1B_1 и AD_1B_1 равен $2\operatorname{arctg} \frac{10}{17}$.

Ответ: 6) $2 \arctan \frac{10}{17}$.

© СтатГрад 2020-2021 уч. г.

© СтатГрад 2020-2021 уч. г.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	2
обоснованно получен верный ответ в пункте δ	
Верно доказан пункт а.	1
ИЛИ	
Верно решён пункт δ при отсутствии обоснований в пункте a	
Решение не соответствует ни одному из критериев, перечис-	0
ленных выше	
Максимальный балл	2

Решите неравенство $\frac{\sqrt{12+x-x^2}}{2x+7} \ge \frac{\sqrt{12+x-x^2}}{x+5}$.

Решение.

Имеем $12 + x - x^2 \ge 0$; $(x-4)(x+3) \le 0$, следовательно, $-3 \le x \le 4$.

Запишем исходное неравенство в виде

$$\sqrt{12+x-x^2}\left(\frac{1}{2x+7}-\frac{1}{x+5}\right) \ge 0; \sqrt{12+x-x^2}\left(\frac{x+2}{(2x+7)(x+5)}\right) \le 0.$$

Получаем $-3 \le x \le -2$ и x = 4.

Ответ: [-3;-2]; 4.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

Окружность, вписанная в треугольник ABC, касается его сторон AB и BC в точках E и F соответственно. Известно, что точки $A,\ E,\ F$ и C лежат на одной окружности.

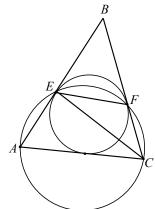
- а) Докажите, что треугольник ABC равнобедренный.
- б) Найдите радиус окружности, на которой лежат точки A , E , F и C , если AC=2 и BC=5 .

Решение.

3

а) Поскольку EB = BF как отрезки касательных, проведённых из одной точки, треугольник EBF равнобедренный. Значит, $\angle BEF = \angle BFE$, а потому равны и смежные с ними углы: $\angle AEF = \angle CFE$. Сумма противоположных углов вписанного четырёхугольника равна 180° , поэтому $\angle BAC = 180^{\circ} - \angle CFE = 180^{\circ} - \angle AEF = \angle BCA$, то есть треугольник ABC равнобедренный с основанием AC.

б) В треугольнике ABC известны стороны AB = BC = 5 и AC = 2. Прямая EF параллельна прямой AC. По теореме о равенстве отрезков касательных, проведённых из одной точки, $AE = CF = \frac{1}{2}AC = 1$.



Пусть $\angle BAC = \alpha$, тогда $\cos \alpha = \frac{AC}{2 \cdot AB} = \frac{1}{5}$ и $\sin \alpha = \sqrt{1 - \frac{1}{25}} = \frac{2\sqrt{6}}{5}$. Радиус описанной около трапеции AEFC окружности найдём из треугольника AEC по теореме синусов: $R = \frac{EC}{2\sin \alpha}$. Длину EC найдём по теореме косинусов: $EC = \sqrt{1^2 + 2^2 - 2 \cdot 1 \cdot 2 \cdot \cos \alpha} = \sqrt{\frac{21}{5}}$. Таким образом, $R = \sqrt{\frac{21}{5}} : \frac{4\sqrt{6}}{5} = \frac{\sqrt{35}}{4\sqrt{2}}$. Ответ: 6) $\frac{\sqrt{70}}{\alpha}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	

Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

15 января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что на восьмой месяц кредитования выплата составит 33 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?

Решение.

Пусть сумма кредита равна S. По условию долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

$$S; \frac{14S}{15}; ...; \frac{2S}{15}; \frac{S}{15}; 0.$$

Первого числа каждого месяца долг возрастает на 3 %, значит, последовательность размеров долга по состоянию на 1-е число такова:

$$1,03S; 1,03 \cdot \frac{14S}{15}; ...; 1,03 \cdot \frac{2S}{15}; 1,03 \cdot \frac{S}{15}.$$

Следовательно, выплаты должны быть следующими:

$$0.03S + \frac{S}{15}$$
; $\frac{14 \cdot 0.03S + S}{15}$; ...; $\frac{2 \cdot 0.03S + S}{15}$; $\frac{0.03S + S}{15}$.

На восьмой месяц выплата составит $\frac{8 \cdot 0,03 \cdot S + S}{15} = \frac{1,24S}{15}$. А всего следует

выплатить

$$S + S \cdot 0.03 \left(1 + \frac{14}{15} + \dots + \frac{2}{15} + \frac{1}{15} \right) = S \left(1 + \frac{16 \cdot 0.03}{2} \right) = 1.24 S.$$

Значит, банку нужно вернуть $33000 \cdot 15 = 495000$ рублей.

Ответ: 495 000 рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

18 Найдите все значения a, при которых уравнение

$$4(x^2 + ax) + \frac{1}{x^2 + ax} = 4$$

имеет единственное решение на отрезке [-1;1].

Решение.

5

Приводя к общему знаменателю и пользуясь формулой квадрата разности, $(2(r^2+ar)-1)^2$

преобразуем уравнение
$$4(x^2+ax)+\frac{1}{x^2+ax}=4$$
 к виду $\frac{(2(x^2+ax)-1)^2}{x^2+ax}=0$.

Числитель и знаменатель этого уравнения не обращаются в нуль одновременно. Следовательно, оно равносильно уравнению $2x^2+2ax-1=0$. Поскольку дискриминант последнего уравнения равен $4a^2+8>0$, оно при всех значениях a имеет ровно два различных решения. Положим $f(x)=2x^2+2ax-1$. Так как f(0)=-1<0, уравнение f(x)=0 будет иметь единственное решение на отрезке [-1;1] тогда и только тогда, когда либо $f(-1)\ge 0$ и f(1)<0, либо f(-1)<0 и $f(1)\ge 0$, то есть когда значения параметра a удовлетворяют системе

$$\begin{cases} 1 - 2a \ge 0, \\ 1 + 2a < 0 \end{cases}$$
 или системе
$$\begin{cases} 1 - 2a < 0, \\ 1 + 2a \ge 0. \end{cases}$$

Значит, уравнение $4(x^2 + ax) + \frac{1}{x^2 + ax} = 4$ имеет единственное решение на отрезке [-1;1] при a < -0.5 или a > 0.5.

Ответ: a < -0.5; a > 0.5.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но ответ содержит лишние значения $a = -0.5$ или $a = 0.5$	3
С помощью верного рассуждения проведено исследование возможного значения корней уравнения $2x^2 + 2ax - 1 = 0$, но из-за	2
вычислительной ошибки получены неверные значения a	
Задача верно сведена к исследованию возможного значения корней уравнения $2x^2 + 2ax - 1 = 0$	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

Пусть S(n) и K(n) обозначают сумму всех цифр и сумму квадратов всех цифр натурального числа n соответственно.

- а) Существует ли такое натуральное число n, что K(n) = 2S(n) + 3?
- б) Существует ли такое натуральное число n, что K(n) = 3S(n) + 3?
- в) Для какого наименьшего натурального числа n выполнено равенство K(n) = 8S(n) + 56?

Решение.

- а) Такое число существует. Например, при n=23 имеем S(n)=5 и $K(n)=13=2\cdot 5+3$.
- б) Предположим, что такое число существует. Тогда если число S(n) чётное, то число K(n) = 3S(n) + 3 нечётное. Если же число S(n) нечётное, то число K(n) = 3S(n) + 3 чётное. С другой стороны, любая цифра и её квадрат имеют одинаковую чётность (то есть чётны или нечётны одновременно). Значит, S(n) и K(n) также имеют одинаковую чётность. Пришли к противоречию.
- в) Пусть n искомое число, k количество всех его цифр, m количество всех девяток в десятичной записи числа n. Тогда сумма всех отличных от девятки цифр числа n равна S(n)-9m, а сумма их квадратов не более 8(S(n)-9m). Значит, $8S(n)+56=K(n)\leq 81m+8(S(n)-9m))=8S(n)+9m$. Следовательно, $m\geq 7$.

Искомое число n является наименьшим натуральным из удовлетворяющих равенству K(n) = 8S(n) + 56, поэтому среди его цифр нет нулей (иначе их можно было бы вычеркнуть) и все его цифры расположены по возрастанию (иначе перестановкой цифр n можно было бы уменьшить). Значит, все левятки в лесятичной записи числа n стоят в конце.

© СтатГрад 2020-2021 уч. г.

Математика. 10 класс. Вариант МА2000310

Из равенства K(n)=8S(n)+56 следует, что либо S(n), либо K(n) не делится на 9 и в числе n есть отличные от девяток цифры. Поэтому $n\geq 19$ 999 999 . При этом K(19 999 999) = $568=8\cdot 64+56=8S(19$ 999 999) + 56. Значит, число n=19 999 999 и есть искомое.

Ответ: а) Да; б) нет; в) 19 999 999.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	1
– обоснованное решение пункта <i>a</i> ;	
– обоснованное решение пункта δ ;	
искомая оценка в пункте в;	
$-$ пример в пункте ϵ , обеспечивающий точность предыдущей оценки	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4